Metamath Proof Explorer


Theorem clwwlk0on0

Description: There is no word over the set of vertices representing a closed walk on vertex X of length 0 in a graph G . (Contributed by AV, 17-Feb-2022) (Revised by AV, 25-Feb-2022)

Ref Expression
Assertion clwwlk0on0 XClWWalksNOnG0=

Proof

Step Hyp Ref Expression
1 eqeq2 v=Xw0=vw0=X
2 1 rabbidv v=XwnClWWalksNG|w0=v=wnClWWalksNG|w0=X
3 oveq1 n=0nClWWalksNG=0ClWWalksNG
4 clwwlkn0 0ClWWalksNG=
5 3 4 eqtrdi n=0nClWWalksNG=
6 5 rabeqdv n=0wnClWWalksNG|w0=X=w|w0=X
7 clwwlknonmpo ClWWalksNOnG=vVtxG,n0wnClWWalksNG|w0=v
8 0ex V
9 8 rabex w|w0=XV
10 2 6 7 9 ovmpo XVtxG00XClWWalksNOnG0=w|w0=X
11 rab0 w|w0=X=
12 10 11 eqtrdi XVtxG00XClWWalksNOnG0=
13 7 mpondm0 ¬XVtxG00XClWWalksNOnG0=
14 12 13 pm2.61i XClWWalksNOnG0=