Metamath Proof Explorer


Theorem rabeqsn

Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 26-Aug-2022)

Ref Expression
Assertion rabeqsn xV|φ=XxxVφx=X

Proof

Step Hyp Ref Expression
1 df-rab xV|φ=x|xVφ
2 1 eqeq1i xV|φ=Xx|xVφ=X
3 absn x|xVφ=XxxVφx=X
4 2 3 bitri xV|φ=XxxVφx=X