| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | clwwlknon1.c |  |-  C = ( ClWWalksNOn ` G ) | 
						
							| 3 |  | clwwlknon1.e |  |-  E = ( Edg ` G ) | 
						
							| 4 |  | simprl |  |-  ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) -> w = <" X "> ) | 
						
							| 5 |  | s1cl |  |-  ( X e. V -> <" X "> e. Word V ) | 
						
							| 6 | 5 | adantr |  |-  ( ( X e. V /\ { X } e. E ) -> <" X "> e. Word V ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> <" X "> e. Word V ) | 
						
							| 8 |  | eleq1 |  |-  ( w = <" X "> -> ( w e. Word V <-> <" X "> e. Word V ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> ( w e. Word V <-> <" X "> e. Word V ) ) | 
						
							| 10 | 7 9 | mpbird |  |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> w e. Word V ) | 
						
							| 11 |  | simpr |  |-  ( ( X e. V /\ { X } e. E ) -> { X } e. E ) | 
						
							| 12 | 11 | anim1ci |  |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> ( w = <" X "> /\ { X } e. E ) ) | 
						
							| 13 | 10 12 | jca |  |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) | 
						
							| 14 | 13 | ex |  |-  ( ( X e. V /\ { X } e. E ) -> ( w = <" X "> -> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) ) | 
						
							| 15 | 4 14 | impbid2 |  |-  ( ( X e. V /\ { X } e. E ) -> ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) ) | 
						
							| 16 | 15 | alrimiv |  |-  ( ( X e. V /\ { X } e. E ) -> A. w ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) ) | 
						
							| 17 | 1 2 3 | clwwlknon1 |  |-  ( X e. V -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( X e. V -> ( ( X C 1 ) = { <" X "> } <-> { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = { <" X "> } ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( X e. V /\ { X } e. E ) -> ( ( X C 1 ) = { <" X "> } <-> { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = { <" X "> } ) ) | 
						
							| 20 |  | rabeqsn |  |-  ( { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = { <" X "> } <-> A. w ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) ) | 
						
							| 21 | 19 20 | bitrdi |  |-  ( ( X e. V /\ { X } e. E ) -> ( ( X C 1 ) = { <" X "> } <-> A. w ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) ) ) | 
						
							| 22 | 16 21 | mpbird |  |-  ( ( X e. V /\ { X } e. E ) -> ( X C 1 ) = { <" X "> } ) |