Metamath Proof Explorer


Theorem clwwlknon1loop

Description: If there is a loop at vertex X , the set of (closed) walks on X of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of X . (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 25-Mar-2022)

Ref Expression
Hypotheses clwwlknon1.v
|- V = ( Vtx ` G )
clwwlknon1.c
|- C = ( ClWWalksNOn ` G )
clwwlknon1.e
|- E = ( Edg ` G )
Assertion clwwlknon1loop
|- ( ( X e. V /\ { X } e. E ) -> ( X C 1 ) = { <" X "> } )

Proof

Step Hyp Ref Expression
1 clwwlknon1.v
 |-  V = ( Vtx ` G )
2 clwwlknon1.c
 |-  C = ( ClWWalksNOn ` G )
3 clwwlknon1.e
 |-  E = ( Edg ` G )
4 simprl
 |-  ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) -> w = <" X "> )
5 s1cl
 |-  ( X e. V -> <" X "> e. Word V )
6 5 adantr
 |-  ( ( X e. V /\ { X } e. E ) -> <" X "> e. Word V )
7 6 adantr
 |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> <" X "> e. Word V )
8 eleq1
 |-  ( w = <" X "> -> ( w e. Word V <-> <" X "> e. Word V ) )
9 8 adantl
 |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> ( w e. Word V <-> <" X "> e. Word V ) )
10 7 9 mpbird
 |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> w e. Word V )
11 simpr
 |-  ( ( X e. V /\ { X } e. E ) -> { X } e. E )
12 11 anim1ci
 |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> ( w = <" X "> /\ { X } e. E ) )
13 10 12 jca
 |-  ( ( ( X e. V /\ { X } e. E ) /\ w = <" X "> ) -> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) )
14 13 ex
 |-  ( ( X e. V /\ { X } e. E ) -> ( w = <" X "> -> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) )
15 4 14 impbid2
 |-  ( ( X e. V /\ { X } e. E ) -> ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) )
16 15 alrimiv
 |-  ( ( X e. V /\ { X } e. E ) -> A. w ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) )
17 1 2 3 clwwlknon1
 |-  ( X e. V -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } )
18 17 eqeq1d
 |-  ( X e. V -> ( ( X C 1 ) = { <" X "> } <-> { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = { <" X "> } ) )
19 18 adantr
 |-  ( ( X e. V /\ { X } e. E ) -> ( ( X C 1 ) = { <" X "> } <-> { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = { <" X "> } ) )
20 rabeqsn
 |-  ( { w e. Word V | ( w = <" X "> /\ { X } e. E ) } = { <" X "> } <-> A. w ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) )
21 19 20 bitrdi
 |-  ( ( X e. V /\ { X } e. E ) -> ( ( X C 1 ) = { <" X "> } <-> A. w ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) <-> w = <" X "> ) ) )
22 16 21 mpbird
 |-  ( ( X e. V /\ { X } e. E ) -> ( X C 1 ) = { <" X "> } )