| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex | ⊢ ( 𝑁  WWalksN  𝐺 )  ∈  V | 
						
							| 2 | 1 | mptrabex | ⊢ ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ∈  V | 
						
							| 3 | 2 | resex | ⊢ ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  ∈  V | 
						
							| 4 |  | eqid | ⊢ ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  =  ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) ) | 
						
							| 5 |  | eqid | ⊢ { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  =  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) } | 
						
							| 6 | 5 4 | clwwlkf1o | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) ) : { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) } –1-1-onto→ ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑦  =  ( 𝑤  prefix  𝑁 )  →  ( 𝑦 ‘ 0 )  =  ( ( 𝑤  prefix  𝑁 ) ‘ 0 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑤  prefix  𝑁 )  →  ( ( 𝑦 ‘ 0 )  =  𝑋  ↔  ( ( 𝑤  prefix  𝑁 ) ‘ 0 )  =  𝑋 ) ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∧  𝑦  =  ( 𝑤  prefix  𝑁 ) )  →  ( ( 𝑦 ‘ 0 )  =  𝑋  ↔  ( ( 𝑤  prefix  𝑁 ) ‘ 0 )  =  𝑋 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝑤  →  ( lastS ‘ 𝑥 )  =  ( lastS ‘ 𝑤 ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥 ‘ 0 )  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥  =  𝑤  →  ( ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 )  ↔  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) ) ) | 
						
							| 13 | 12 | elrab | ⊢ ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↔  ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 15 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 16 | 14 15 | wwlknp | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 17 |  | simpll | ⊢ ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 18 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 19 |  | uzid | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 20 |  | peano2uz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 22 |  | elfz1end | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 23 | 22 | biimpi | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 24 |  | fzss2 | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 1 ... 𝑁 )  ⊆  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 25 | 24 | sselda | ⊢ ( ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑁  ∈  ( 1 ... 𝑁 ) )  →  𝑁  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 26 | 21 23 25 | syl2anc | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ( 1 ... ( ♯ ‘ 𝑤 ) )  =  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 29 | 28 | eleq2d | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) )  ↔  𝑁  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) )  ↔  𝑁  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) )  ↔  𝑁  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 32 | 27 31 | mpbird | ⊢ ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) ) ) | 
						
							| 33 | 17 32 | jca | ⊢ ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) ) ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ℕ  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 35 | 34 | 3adant3 | ⊢ ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑁  ∈  ℕ  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 36 | 16 35 | syl | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) )  →  ( 𝑁  ∈  ℕ  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 38 | 13 37 | sylbi | ⊢ ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  →  ( 𝑁  ∈  ℕ  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) ) ) ) ) | 
						
							| 39 | 38 | impcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) } )  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) ) ) ) | 
						
							| 40 |  | pfxfv0 | ⊢ ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑤 ) ) )  →  ( ( 𝑤  prefix  𝑁 ) ‘ 0 )  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) } )  →  ( ( 𝑤  prefix  𝑁 ) ‘ 0 )  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 42 | 41 | eqeq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) } )  →  ( ( ( 𝑤  prefix  𝑁 ) ‘ 0 )  =  𝑋  ↔  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 43 | 42 | 3adant3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∧  𝑦  =  ( 𝑤  prefix  𝑁 ) )  →  ( ( ( 𝑤  prefix  𝑁 ) ‘ 0 )  =  𝑋  ↔  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 44 | 9 43 | bitrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∧  𝑦  =  ( 𝑤  prefix  𝑁 ) )  →  ( ( 𝑦 ‘ 0 )  =  𝑋  ↔  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 45 | 4 6 44 | f1oresrab | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑦 ‘ 0 )  =  𝑋 } ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑦 ‘ 0 )  =  𝑋 } ) | 
						
							| 47 |  | clwwlknon | ⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  =  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑦 ‘ 0 )  =  𝑋 } | 
						
							| 48 | 47 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  =  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑦 ‘ 0 )  =  𝑋 } ) | 
						
							| 49 | 48 | f1oeq3d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑦 ‘ 0 )  =  𝑋 } ) ) | 
						
							| 50 | 46 49 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 51 |  | f1oeq1 | ⊢ ( 𝑓  =  ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  →  ( 𝑓 : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) | 
						
							| 52 | 51 | spcegv | ⊢ ( ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  ∈  V  →  ( ( ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ↦  ( 𝑤  prefix  𝑁 ) )  ↾  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) | 
						
							| 53 | 3 50 52 | mpsyl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 54 |  | df-rab | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  =  { 𝑤  ∣  ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) } | 
						
							| 55 |  | anass | ⊢ ( ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 56 | 55 | bicomi | ⊢ ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) )  ↔  ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 57 | 56 | abbii | ⊢ { 𝑤  ∣  ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) }  =  { 𝑤  ∣  ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 58 | 13 | bicomi | ⊢ ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) )  ↔  𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) } ) | 
						
							| 59 | 58 | anbi1i | ⊢ ( ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 60 | 59 | abbii | ⊢ { 𝑤  ∣  ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  =  { 𝑤  ∣  ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 61 |  | df-rab | ⊢ { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  =  { 𝑤  ∣  ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 62 | 60 61 | eqtr4i | ⊢ { 𝑤  ∣  ( ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  =  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } | 
						
							| 63 | 54 57 62 | 3eqtri | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  =  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } | 
						
							| 64 |  | f1oeq2 | ⊢ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  =  { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  →  ( 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  𝑓 : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) | 
						
							| 65 | 63 64 | mp1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  𝑓 : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) | 
						
							| 66 | 65 | exbidv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ∃ 𝑓 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ∃ 𝑓 𝑓 : { 𝑤  ∈  { 𝑥  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑥 )  =  ( 𝑥 ‘ 0 ) }  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) | 
						
							| 67 | 53 66 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } –1-1-onto→ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) |