| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1oresrab.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 2 |
|
f1oresrab.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 3 |
|
f1oresrab.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → ( 𝜒 ↔ 𝜓 ) ) |
| 4 |
|
f1ofun |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐹 ) |
| 5 |
|
funcnvcnv |
⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) |
| 6 |
2 4 5
|
3syl |
⊢ ( 𝜑 → Fun ◡ ◡ 𝐹 ) |
| 7 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
| 8 |
|
f1of1 |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
| 9 |
2 7 8
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ) |
| 10 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ⊆ 𝐵 |
| 11 |
|
f1ores |
⊢ ( ( ◡ 𝐹 : 𝐵 –1-1→ 𝐴 ∧ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ⊆ 𝐵 ) → ( ◡ 𝐹 ↾ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) : { 𝑦 ∈ 𝐵 ∣ 𝜒 } –1-1-onto→ ( ◡ 𝐹 “ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( 𝜑 → ( ◡ 𝐹 ↾ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) : { 𝑦 ∈ 𝐵 ∣ 𝜒 } –1-1-onto→ ( ◡ 𝐹 “ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) ) |
| 13 |
1
|
mptpreima |
⊢ ( ◡ 𝐹 “ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜒 } } |
| 14 |
3
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝐶 → ( 𝜒 ↔ 𝜓 ) ) ) |
| 15 |
14
|
alrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 = 𝐶 → ( 𝜒 ↔ 𝜓 ) ) ) |
| 16 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 17 |
2 16
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 18 |
1
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 19 |
17 18
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
| 20 |
19
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 21 |
|
elrab3t |
⊢ ( ( ∀ 𝑦 ( 𝑦 = 𝐶 → ( 𝜒 ↔ 𝜓 ) ) ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ↔ 𝜓 ) ) |
| 22 |
15 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ↔ 𝜓 ) ) |
| 23 |
22
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜒 } } = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 24 |
13 23
|
eqtrid |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) = { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 25 |
24
|
f1oeq3d |
⊢ ( 𝜑 → ( ( ◡ 𝐹 ↾ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) : { 𝑦 ∈ 𝐵 ∣ 𝜒 } –1-1-onto→ ( ◡ 𝐹 “ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) ↔ ( ◡ 𝐹 ↾ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) : { 𝑦 ∈ 𝐵 ∣ 𝜒 } –1-1-onto→ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
| 26 |
12 25
|
mpbid |
⊢ ( 𝜑 → ( ◡ 𝐹 ↾ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) : { 𝑦 ∈ 𝐵 ∣ 𝜒 } –1-1-onto→ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 27 |
|
f1orescnv |
⊢ ( ( Fun ◡ ◡ 𝐹 ∧ ( ◡ 𝐹 ↾ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) : { 𝑦 ∈ 𝐵 ∣ 𝜒 } –1-1-onto→ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) → ( ◡ ◡ 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) : { 𝑥 ∈ 𝐴 ∣ 𝜓 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |
| 28 |
6 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ◡ 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) : { 𝑥 ∈ 𝐴 ∣ 𝜓 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |
| 29 |
|
rescnvcnv |
⊢ ( ◡ ◡ 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = ( 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| 30 |
|
f1oeq1 |
⊢ ( ( ◡ ◡ 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = ( 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) → ( ( ◡ ◡ 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) : { 𝑥 ∈ 𝐴 ∣ 𝜓 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ↔ ( 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) : { 𝑥 ∈ 𝐴 ∣ 𝜓 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) ) |
| 31 |
29 30
|
ax-mp |
⊢ ( ( ◡ ◡ 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) : { 𝑥 ∈ 𝐴 ∣ 𝜓 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ↔ ( 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) : { 𝑥 ∈ 𝐴 ∣ 𝜓 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |
| 32 |
28 31
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) : { 𝑥 ∈ 𝐴 ∣ 𝜓 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |