| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | numclwwlk.q |  |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
							| 3 |  | numclwwlk.h |  |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
							| 4 | 1 2 | numclwwlkovq |  |-  ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
							| 5 | 4 | 3adant1 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
							| 6 | 5 | eleq2d |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( W e. ( X Q N ) <-> W e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) | 
						
							| 7 |  | fveq1 |  |-  ( w = W -> ( w ` 0 ) = ( W ` 0 ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( w = W -> ( ( w ` 0 ) = X <-> ( W ` 0 ) = X ) ) | 
						
							| 9 |  | fveq2 |  |-  ( w = W -> ( lastS ` w ) = ( lastS ` W ) ) | 
						
							| 10 | 9 | neeq1d |  |-  ( w = W -> ( ( lastS ` w ) =/= X <-> ( lastS ` W ) =/= X ) ) | 
						
							| 11 | 8 10 | anbi12d |  |-  ( w = W -> ( ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) <-> ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) | 
						
							| 12 | 11 | elrab |  |-  ( W e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } <-> ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) | 
						
							| 13 | 6 12 | bitrdi |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( W e. ( X Q N ) <-> ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) ) | 
						
							| 14 |  | simpl1 |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) -> G e. FriendGraph ) | 
						
							| 15 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 16 | 1 15 | wwlknp |  |-  ( W e. ( N WWalksN G ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 17 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) /\ N e. NN ) -> ( N + 1 ) e. NN ) | 
						
							| 19 |  | simpl |  |-  ( ( ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) /\ N e. NN ) -> ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) ) | 
						
							| 20 | 18 19 | jca |  |-  ( ( ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) /\ N e. NN ) -> ( ( N + 1 ) e. NN /\ ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) ) ) | 
						
							| 21 | 20 | ex |  |-  ( ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) -> ( N e. NN -> ( ( N + 1 ) e. NN /\ ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) ) ) ) | 
						
							| 22 | 21 | 3adant3 |  |-  ( ( W e. Word V /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( N e. NN -> ( ( N + 1 ) e. NN /\ ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) ) ) ) | 
						
							| 23 | 16 22 | syl |  |-  ( W e. ( N WWalksN G ) -> ( N e. NN -> ( ( N + 1 ) e. NN /\ ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) ) ) ) | 
						
							| 24 |  | lswlgt0cl |  |-  ( ( ( N + 1 ) e. NN /\ ( W e. Word V /\ ( # ` W ) = ( N + 1 ) ) ) -> ( lastS ` W ) e. V ) | 
						
							| 25 | 23 24 | syl6 |  |-  ( W e. ( N WWalksN G ) -> ( N e. NN -> ( lastS ` W ) e. V ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> ( N e. NN -> ( lastS ` W ) e. V ) ) | 
						
							| 27 | 26 | com12 |  |-  ( N e. NN -> ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> ( lastS ` W ) e. V ) ) | 
						
							| 28 | 27 | 3ad2ant3 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> ( lastS ` W ) e. V ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) -> ( lastS ` W ) e. V ) | 
						
							| 30 |  | eleq1 |  |-  ( ( W ` 0 ) = X -> ( ( W ` 0 ) e. V <-> X e. V ) ) | 
						
							| 31 | 30 | biimprd |  |-  ( ( W ` 0 ) = X -> ( X e. V -> ( W ` 0 ) e. V ) ) | 
						
							| 32 | 31 | ad2antrl |  |-  ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> ( X e. V -> ( W ` 0 ) e. V ) ) | 
						
							| 33 | 32 | com12 |  |-  ( X e. V -> ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> ( W ` 0 ) e. V ) ) | 
						
							| 34 | 33 | 3ad2ant2 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> ( W ` 0 ) e. V ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) -> ( W ` 0 ) e. V ) | 
						
							| 36 |  | neeq2 |  |-  ( X = ( W ` 0 ) -> ( ( lastS ` W ) =/= X <-> ( lastS ` W ) =/= ( W ` 0 ) ) ) | 
						
							| 37 | 36 | eqcoms |  |-  ( ( W ` 0 ) = X -> ( ( lastS ` W ) =/= X <-> ( lastS ` W ) =/= ( W ` 0 ) ) ) | 
						
							| 38 | 37 | biimpa |  |-  ( ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) -> ( lastS ` W ) =/= ( W ` 0 ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> ( lastS ` W ) =/= ( W ` 0 ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) -> ( lastS ` W ) =/= ( W ` 0 ) ) | 
						
							| 41 | 29 35 40 | 3jca |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) -> ( ( lastS ` W ) e. V /\ ( W ` 0 ) e. V /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) | 
						
							| 42 | 1 15 | frcond2 |  |-  ( G e. FriendGraph -> ( ( ( lastS ` W ) e. V /\ ( W ` 0 ) e. V /\ ( lastS ` W ) =/= ( W ` 0 ) ) -> E! v e. V ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 43 | 14 41 42 | sylc |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) -> E! v e. V ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 44 |  | simpl |  |-  ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> W e. ( N WWalksN G ) ) | 
						
							| 45 | 44 | ad2antlr |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> W e. ( N WWalksN G ) ) | 
						
							| 46 |  | simpr |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> v e. V ) | 
						
							| 47 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 48 | 47 | 3ad2ant3 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> N e. NN0 ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> N e. NN0 ) | 
						
							| 50 | 45 46 49 | 3jca |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( W e. ( N WWalksN G ) /\ v e. V /\ N e. NN0 ) ) | 
						
							| 51 | 1 15 | wwlksext2clwwlk |  |-  ( ( W e. ( N WWalksN G ) /\ v e. V ) -> ( ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) ) | 
						
							| 52 | 51 | 3adant3 |  |-  ( ( W e. ( N WWalksN G ) /\ v e. V /\ N e. NN0 ) -> ( ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) ) | 
						
							| 53 | 52 | imp |  |-  ( ( ( W e. ( N WWalksN G ) /\ v e. V /\ N e. NN0 ) /\ ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) ) -> ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) | 
						
							| 54 | 50 53 | sylan |  |-  ( ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) /\ ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) ) -> ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) | 
						
							| 55 | 1 | wwlknbp |  |-  ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word V ) ) | 
						
							| 56 | 55 | simp3d |  |-  ( W e. ( N WWalksN G ) -> W e. Word V ) | 
						
							| 57 | 56 | ad2antrl |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) -> W e. Word V ) | 
						
							| 58 | 57 | ad2antrr |  |-  ( ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) /\ ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) -> W e. Word V ) | 
						
							| 59 | 46 | adantr |  |-  ( ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) /\ ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) -> v e. V ) | 
						
							| 60 |  | 2z |  |-  2 e. ZZ | 
						
							| 61 |  | nn0pzuz |  |-  ( ( N e. NN0 /\ 2 e. ZZ ) -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 62 | 47 60 61 | sylancl |  |-  ( N e. NN -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 63 | 62 | 3ad2ant3 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 64 | 63 | ad3antrrr |  |-  ( ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) /\ ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 65 |  | simpr |  |-  ( ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) /\ ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) -> ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) | 
						
							| 66 | 1 15 | clwwlkext2edg |  |-  ( ( ( W e. Word V /\ v e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) /\ ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) -> ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 67 | 58 59 64 65 66 | syl31anc |  |-  ( ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) /\ ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) -> ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 68 | 54 67 | impbida |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) ) ) | 
						
							| 69 | 46 1 | eleqtrdi |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> v e. ( Vtx ` G ) ) | 
						
							| 70 | 38 | anim2i |  |-  ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> ( W e. ( N WWalksN G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) | 
						
							| 71 | 70 | ad2antlr |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( W e. ( N WWalksN G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) | 
						
							| 72 | 71 | simprd |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( lastS ` W ) =/= ( W ` 0 ) ) | 
						
							| 73 |  | numclwwlk2lem1lem |  |-  ( ( v e. ( Vtx ` G ) /\ W e. ( N WWalksN G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) -> ( ( ( W ++ <" v "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" v "> ) ` N ) =/= ( W ` 0 ) ) ) | 
						
							| 74 | 69 45 72 73 | syl3anc |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( ( W ++ <" v "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" v "> ) ` N ) =/= ( W ` 0 ) ) ) | 
						
							| 75 |  | eqeq2 |  |-  ( X = ( W ` 0 ) -> ( ( ( W ++ <" v "> ) ` 0 ) = X <-> ( ( W ++ <" v "> ) ` 0 ) = ( W ` 0 ) ) ) | 
						
							| 76 | 75 | eqcoms |  |-  ( ( W ` 0 ) = X -> ( ( ( W ++ <" v "> ) ` 0 ) = X <-> ( ( W ++ <" v "> ) ` 0 ) = ( W ` 0 ) ) ) | 
						
							| 77 | 76 | ad2antrl |  |-  ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> ( ( ( W ++ <" v "> ) ` 0 ) = X <-> ( ( W ++ <" v "> ) ` 0 ) = ( W ` 0 ) ) ) | 
						
							| 78 | 77 | ad2antlr |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( ( W ++ <" v "> ) ` 0 ) = X <-> ( ( W ++ <" v "> ) ` 0 ) = ( W ` 0 ) ) ) | 
						
							| 79 | 74 | simpld |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( W ++ <" v "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 80 | 79 | neeq2d |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( ( W ++ <" v "> ) ` N ) =/= ( ( W ++ <" v "> ) ` 0 ) <-> ( ( W ++ <" v "> ) ` N ) =/= ( W ` 0 ) ) ) | 
						
							| 81 | 78 80 | anbi12d |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( ( ( W ++ <" v "> ) ` 0 ) = X /\ ( ( W ++ <" v "> ) ` N ) =/= ( ( W ++ <" v "> ) ` 0 ) ) <-> ( ( ( W ++ <" v "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" v "> ) ` N ) =/= ( W ` 0 ) ) ) ) | 
						
							| 82 | 74 81 | mpbird |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( ( W ++ <" v "> ) ` 0 ) = X /\ ( ( W ++ <" v "> ) ` N ) =/= ( ( W ++ <" v "> ) ` 0 ) ) ) | 
						
							| 83 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 84 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 85 | 83 84 | pncand |  |-  ( N e. NN -> ( ( N + 2 ) - 2 ) = N ) | 
						
							| 86 | 85 | 3ad2ant3 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( N + 2 ) - 2 ) = N ) | 
						
							| 87 | 86 | ad2antrr |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( N + 2 ) - 2 ) = N ) | 
						
							| 88 | 87 | fveq2d |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) = ( ( W ++ <" v "> ) ` N ) ) | 
						
							| 89 | 88 | neeq1d |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) =/= ( ( W ++ <" v "> ) ` 0 ) <-> ( ( W ++ <" v "> ) ` N ) =/= ( ( W ++ <" v "> ) ` 0 ) ) ) | 
						
							| 90 | 89 | anbi2d |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( ( ( W ++ <" v "> ) ` 0 ) = X /\ ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) =/= ( ( W ++ <" v "> ) ` 0 ) ) <-> ( ( ( W ++ <" v "> ) ` 0 ) = X /\ ( ( W ++ <" v "> ) ` N ) =/= ( ( W ++ <" v "> ) ` 0 ) ) ) ) | 
						
							| 91 | 82 90 | mpbird |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( ( W ++ <" v "> ) ` 0 ) = X /\ ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) =/= ( ( W ++ <" v "> ) ` 0 ) ) ) | 
						
							| 92 | 91 | biantrud |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) <-> ( ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( ( W ++ <" v "> ) ` 0 ) = X /\ ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) =/= ( ( W ++ <" v "> ) ` 0 ) ) ) ) ) | 
						
							| 93 | 62 | anim2i |  |-  ( ( X e. V /\ N e. NN ) -> ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 94 | 93 | 3adant1 |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 95 | 94 | ad2antrr |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 96 | 3 | numclwwlkovh |  |-  ( ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) -> ( X H ( N + 2 ) ) = { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) | 
						
							| 97 | 95 96 | syl |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( X H ( N + 2 ) ) = { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) | 
						
							| 98 | 97 | eleq2d |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( W ++ <" v "> ) e. ( X H ( N + 2 ) ) <-> ( W ++ <" v "> ) e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) ) | 
						
							| 99 |  | fveq1 |  |-  ( w = ( W ++ <" v "> ) -> ( w ` 0 ) = ( ( W ++ <" v "> ) ` 0 ) ) | 
						
							| 100 | 99 | eqeq1d |  |-  ( w = ( W ++ <" v "> ) -> ( ( w ` 0 ) = X <-> ( ( W ++ <" v "> ) ` 0 ) = X ) ) | 
						
							| 101 |  | fveq1 |  |-  ( w = ( W ++ <" v "> ) -> ( w ` ( ( N + 2 ) - 2 ) ) = ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) ) | 
						
							| 102 | 101 99 | neeq12d |  |-  ( w = ( W ++ <" v "> ) -> ( ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) <-> ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) =/= ( ( W ++ <" v "> ) ` 0 ) ) ) | 
						
							| 103 | 100 102 | anbi12d |  |-  ( w = ( W ++ <" v "> ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) <-> ( ( ( W ++ <" v "> ) ` 0 ) = X /\ ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) =/= ( ( W ++ <" v "> ) ` 0 ) ) ) ) | 
						
							| 104 | 103 | elrab |  |-  ( ( W ++ <" v "> ) e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } <-> ( ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( ( W ++ <" v "> ) ` 0 ) = X /\ ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) =/= ( ( W ++ <" v "> ) ` 0 ) ) ) ) | 
						
							| 105 | 98 104 | bitr2di |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( ( W ++ <" v "> ) e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( ( W ++ <" v "> ) ` 0 ) = X /\ ( ( W ++ <" v "> ) ` ( ( N + 2 ) - 2 ) ) =/= ( ( W ++ <" v "> ) ` 0 ) ) ) <-> ( W ++ <" v "> ) e. ( X H ( N + 2 ) ) ) ) | 
						
							| 106 | 68 92 105 | 3bitrd |  |-  ( ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) /\ v e. V ) -> ( ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( W ++ <" v "> ) e. ( X H ( N + 2 ) ) ) ) | 
						
							| 107 | 106 | reubidva |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) -> ( E! v e. V ( { ( lastS ` W ) , v } e. ( Edg ` G ) /\ { v , ( W ` 0 ) } e. ( Edg ` G ) ) <-> E! v e. V ( W ++ <" v "> ) e. ( X H ( N + 2 ) ) ) ) | 
						
							| 108 | 43 107 | mpbid |  |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) ) -> E! v e. V ( W ++ <" v "> ) e. ( X H ( N + 2 ) ) ) | 
						
							| 109 | 108 | ex |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = X /\ ( lastS ` W ) =/= X ) ) -> E! v e. V ( W ++ <" v "> ) e. ( X H ( N + 2 ) ) ) ) | 
						
							| 110 | 13 109 | sylbid |  |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( W e. ( X Q N ) -> E! v e. V ( W ++ <" v "> ) e. ( X H ( N + 2 ) ) ) ) |