| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlknbp1 |  |-  ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) | 
						
							| 2 |  | simpl2 |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 3 |  | s1cl |  |-  ( X e. ( Vtx ` G ) -> <" X "> e. Word ( Vtx ` G ) ) | 
						
							| 4 | 3 | ad2antrl |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> <" X "> e. Word ( Vtx ` G ) ) | 
						
							| 5 |  | nn0p1gt0 |  |-  ( N e. NN0 -> 0 < ( N + 1 ) ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> 0 < ( N + 1 ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> 0 < ( N + 1 ) ) | 
						
							| 8 |  | breq2 |  |-  ( ( # ` W ) = ( N + 1 ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) ) | 
						
							| 9 | 8 | 3ad2ant3 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) ) | 
						
							| 11 | 7 10 | mpbird |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> 0 < ( # ` W ) ) | 
						
							| 12 |  | ccatfv0 |  |-  ( ( W e. Word ( Vtx ` G ) /\ <" X "> e. Word ( Vtx ` G ) /\ 0 < ( # ` W ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 13 | 2 4 11 12 | syl3anc |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 14 |  | oveq1 |  |-  ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 16 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 17 |  | pncan1 |  |-  ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 18 | 16 17 | syl |  |-  ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 19 | 18 | 3ad2ant1 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 20 | 15 19 | eqtr2d |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> N = ( ( # ` W ) - 1 ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> N = ( ( # ` W ) - 1 ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( W ++ <" X "> ) ` N ) = ( ( W ++ <" X "> ) ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 23 |  | simpl2 |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 24 | 3 | adantl |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> <" X "> e. Word ( Vtx ` G ) ) | 
						
							| 25 | 6 | adantr |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> 0 < ( N + 1 ) ) | 
						
							| 26 | 9 | adantr |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) ) | 
						
							| 27 | 25 26 | mpbird |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> 0 < ( # ` W ) ) | 
						
							| 28 |  | hashneq0 |  |-  ( W e. Word ( Vtx ` G ) -> ( 0 < ( # ` W ) <-> W =/= (/) ) ) | 
						
							| 29 | 28 | bicomd |  |-  ( W e. Word ( Vtx ` G ) -> ( W =/= (/) <-> 0 < ( # ` W ) ) ) | 
						
							| 30 | 29 | 3ad2ant2 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( W =/= (/) <-> 0 < ( # ` W ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( W =/= (/) <-> 0 < ( # ` W ) ) ) | 
						
							| 32 | 27 31 | mpbird |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> W =/= (/) ) | 
						
							| 33 |  | ccatval1lsw |  |-  ( ( W e. Word ( Vtx ` G ) /\ <" X "> e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( ( W ++ <" X "> ) ` ( ( # ` W ) - 1 ) ) = ( lastS ` W ) ) | 
						
							| 34 | 23 24 32 33 | syl3anc |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( W ++ <" X "> ) ` ( ( # ` W ) - 1 ) ) = ( lastS ` W ) ) | 
						
							| 35 | 22 34 | eqtr2d |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( lastS ` W ) = ( ( W ++ <" X "> ) ` N ) ) | 
						
							| 36 | 35 | neeq1d |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( lastS ` W ) =/= ( W ` 0 ) <-> ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) | 
						
							| 37 | 36 | biimpd |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( lastS ` W ) =/= ( W ` 0 ) -> ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) | 
						
							| 38 | 37 | impr |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) | 
						
							| 39 | 13 38 | jca |  |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) | 
						
							| 40 | 39 | exp32 |  |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( X e. ( Vtx ` G ) -> ( ( lastS ` W ) =/= ( W ` 0 ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) ) ) | 
						
							| 41 | 1 40 | syl |  |-  ( W e. ( N WWalksN G ) -> ( X e. ( Vtx ` G ) -> ( ( lastS ` W ) =/= ( W ` 0 ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) ) ) | 
						
							| 42 | 41 | 3imp21 |  |-  ( ( X e. ( Vtx ` G ) /\ W e. ( N WWalksN G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) |