| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lennncl |
|- ( ( A e. Word V /\ A =/= (/) ) -> ( # ` A ) e. NN ) |
| 2 |
1
|
3adant2 |
|- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( # ` A ) e. NN ) |
| 3 |
|
fzo0end |
|- ( ( # ` A ) e. NN -> ( ( # ` A ) - 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
| 4 |
2 3
|
syl |
|- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( ( # ` A ) - 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
| 5 |
|
ccatval1 |
|- ( ( A e. Word V /\ B e. Word V /\ ( ( # ` A ) - 1 ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 6 |
4 5
|
syld3an3 |
|- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 7 |
|
lsw |
|- ( A e. Word V -> ( lastS ` A ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( lastS ` A ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 9 |
6 8
|
eqtr4d |
|- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) |