Step |
Hyp |
Ref |
Expression |
1 |
|
lennncl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
3 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
5 |
|
ccatval1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
6 |
4 5
|
syld3an3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
7 |
|
lsw |
⊢ ( 𝐴 ∈ Word 𝑉 → ( lastS ‘ 𝐴 ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( lastS ‘ 𝐴 ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
9 |
6 8
|
eqtr4d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( lastS ‘ 𝐴 ) ) |