| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlknbp1 | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 2 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 3 |  | s1cl | ⊢ ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  →  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 5 |  | nn0p1gt0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 8 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  0  <  ( 𝑁  +  1 ) ) ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  0  <  ( 𝑁  +  1 ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  0  <  ( 𝑁  +  1 ) ) ) | 
						
							| 11 | 7 10 | mpbird | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  0  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 12 |  | ccatfv0 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  0  <  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 13 | 2 4 11 12 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 16 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 17 |  | pncan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 20 | 15 19 | eqtr2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  𝑁  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  𝑁  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  =  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 23 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 24 | 3 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 25 | 6 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  0  <  ( 𝑁  +  1 ) ) | 
						
							| 26 | 9 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  0  <  ( 𝑁  +  1 ) ) ) | 
						
							| 27 | 25 26 | mpbird | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  0  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 28 |  | hashneq0 | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 0  <  ( ♯ ‘ 𝑊 )  ↔  𝑊  ≠  ∅ ) ) | 
						
							| 29 | 28 | bicomd | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑊  ≠  ∅  ↔  0  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 30 | 29 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑊  ≠  ∅  ↔  0  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝑊  ≠  ∅  ↔  0  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 32 | 27 31 | mpbird | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  𝑊  ≠  ∅ ) | 
						
							| 33 |  | ccatval1lsw | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  〈“ 𝑋 ”〉  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( lastS ‘ 𝑊 ) ) | 
						
							| 34 | 23 24 32 33 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( lastS ‘ 𝑊 ) ) | 
						
							| 35 | 22 34 | eqtr2d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( lastS ‘ 𝑊 )  =  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ) | 
						
							| 36 | 35 | neeq1d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 )  ↔  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 37 | 36 | biimpd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 38 | 37 | impr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 39 | 13 38 | jca | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 40 | 39 | exp32 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) ) ) | 
						
							| 41 | 1 40 | syl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) ) ) | 
						
							| 42 | 41 | 3imp21 | ⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑋 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) |