| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwwlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
numclwwlk.q |
⊢ 𝑄 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑣 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑣 ) } ) |
| 3 |
|
numclwwlk.h |
⊢ 𝐻 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) ≠ 𝑣 } ) |
| 4 |
1 2
|
numclwwlkovq |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑋 𝑄 𝑁 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ) |
| 5 |
4
|
3adant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑋 𝑄 𝑁 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ) |
| 6 |
5
|
eleq2d |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑊 ∈ ( 𝑋 𝑄 𝑁 ) ↔ 𝑊 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ) ) |
| 7 |
|
fveq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 0 ) = 𝑋 ↔ ( 𝑊 ‘ 0 ) = 𝑋 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑊 ) ) |
| 10 |
9
|
neeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( lastS ‘ 𝑤 ) ≠ 𝑋 ↔ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) |
| 11 |
8 10
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) ↔ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) |
| 12 |
11
|
elrab |
⊢ ( 𝑊 ∈ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) |
| 13 |
6 12
|
bitrdi |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑊 ∈ ( 𝑋 𝑄 𝑁 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ) |
| 14 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) → 𝐺 ∈ FriendGraph ) |
| 15 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 16 |
1 15
|
wwlknp |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 17 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 + 1 ) ∈ ℕ ) |
| 19 |
|
simpl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) |
| 20 |
18 19
|
jca |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 + 1 ) ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |
| 21 |
20
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) ) |
| 22 |
21
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) ) |
| 23 |
16 22
|
syl |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) ) |
| 24 |
|
lswlgt0cl |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) |
| 25 |
23 24
|
syl6 |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ( 𝑁 ∈ ℕ → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) ) |
| 27 |
26
|
com12 |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) ) |
| 28 |
27
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) ) |
| 29 |
28
|
imp |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) → ( lastS ‘ 𝑊 ) ∈ 𝑉 ) |
| 30 |
|
eleq1 |
⊢ ( ( 𝑊 ‘ 0 ) = 𝑋 → ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ↔ 𝑋 ∈ 𝑉 ) ) |
| 31 |
30
|
biimprd |
⊢ ( ( 𝑊 ‘ 0 ) = 𝑋 → ( 𝑋 ∈ 𝑉 → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) ) |
| 32 |
31
|
ad2antrl |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ( 𝑋 ∈ 𝑉 → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) ) |
| 33 |
32
|
com12 |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) ) |
| 34 |
33
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) ) |
| 35 |
34
|
imp |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |
| 36 |
|
neeq2 |
⊢ ( 𝑋 = ( 𝑊 ‘ 0 ) → ( ( lastS ‘ 𝑊 ) ≠ 𝑋 ↔ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
| 37 |
36
|
eqcoms |
⊢ ( ( 𝑊 ‘ 0 ) = 𝑋 → ( ( lastS ‘ 𝑊 ) ≠ 𝑋 ↔ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
| 38 |
37
|
biimpa |
⊢ ( ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) → ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) → ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) |
| 41 |
29 35 40
|
3jca |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) → ( ( lastS ‘ 𝑊 ) ∈ 𝑉 ∧ ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
| 42 |
1 15
|
frcond2 |
⊢ ( 𝐺 ∈ FriendGraph → ( ( ( lastS ‘ 𝑊 ) ∈ 𝑉 ∧ ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) → ∃! 𝑣 ∈ 𝑉 ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 43 |
14 41 42
|
sylc |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) → ∃! 𝑣 ∈ 𝑉 ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 44 |
|
simpl |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ) |
| 45 |
44
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ) |
| 46 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
| 47 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 48 |
47
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑁 ∈ ℕ0 ) |
| 50 |
45 46 49
|
3jca |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ 𝑣 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) |
| 51 |
1 15
|
wwlksext2clwwlk |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ 𝑣 ∈ 𝑉 ) → ( ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) ) |
| 52 |
51
|
3adant3 |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ 𝑣 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) ) |
| 53 |
52
|
imp |
⊢ ( ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ 𝑣 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) |
| 54 |
50 53
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) |
| 55 |
1
|
wwlknbp |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) ) |
| 56 |
55
|
simp3d |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → 𝑊 ∈ Word 𝑉 ) |
| 57 |
56
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) → 𝑊 ∈ Word 𝑉 ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) → 𝑊 ∈ Word 𝑉 ) |
| 59 |
46
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) → 𝑣 ∈ 𝑉 ) |
| 60 |
|
2z |
⊢ 2 ∈ ℤ |
| 61 |
|
nn0pzuz |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ ) → ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 62 |
47 60 61
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 63 |
62
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 64 |
63
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) → ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 65 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) → ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) |
| 66 |
1 15
|
clwwlkext2edg |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑣 ∈ 𝑉 ∧ ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) → ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 67 |
58 59 64 65 66
|
syl31anc |
⊢ ( ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) ∧ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) → ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 68 |
54 67
|
impbida |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ) ) |
| 69 |
46 1
|
eleqtrdi |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) |
| 70 |
38
|
anim2i |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
| 71 |
70
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
| 72 |
71
|
simprd |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) |
| 73 |
|
numclwwlk2lem1lem |
⊢ ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑊 ) ≠ ( 𝑊 ‘ 0 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
| 74 |
69 45 72 73
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
| 75 |
|
eqeq2 |
⊢ ( 𝑋 = ( 𝑊 ‘ 0 ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) ) |
| 76 |
75
|
eqcoms |
⊢ ( ( 𝑊 ‘ 0 ) = 𝑋 → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) ) |
| 77 |
76
|
ad2antrl |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) ) |
| 78 |
77
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) ) |
| 79 |
74
|
simpld |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| 80 |
79
|
neeq2d |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) |
| 81 |
78 80
|
anbi12d |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ↔ ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ≠ ( 𝑊 ‘ 0 ) ) ) ) |
| 82 |
74 81
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) |
| 83 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 84 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 85 |
83 84
|
pncand |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 2 ) − 2 ) = 𝑁 ) |
| 86 |
85
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 + 2 ) − 2 ) = 𝑁 ) |
| 87 |
86
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑁 + 2 ) − 2 ) = 𝑁 ) |
| 88 |
87
|
fveq2d |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) = ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ) |
| 89 |
88
|
neeq1d |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) |
| 90 |
89
|
anbi2d |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ↔ ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ) |
| 91 |
82 90
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) |
| 92 |
91
|
biantrud |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∧ ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ) ) |
| 93 |
62
|
anim2i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 94 |
93
|
3adant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 95 |
94
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 96 |
3
|
numclwwlkovh |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 + 2 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑋 𝐻 ( 𝑁 + 2 ) ) = { 𝑤 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) } ) |
| 97 |
95 96
|
syl |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑋 𝐻 ( 𝑁 + 2 ) ) = { 𝑤 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) } ) |
| 98 |
97
|
eleq2d |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ↔ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ { 𝑤 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) } ) ) |
| 99 |
|
fveq1 |
⊢ ( 𝑤 = ( 𝑊 ++ 〈“ 𝑣 ”〉 ) → ( 𝑤 ‘ 0 ) = ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) |
| 100 |
99
|
eqeq1d |
⊢ ( 𝑤 = ( 𝑊 ++ 〈“ 𝑣 ”〉 ) → ( ( 𝑤 ‘ 0 ) = 𝑋 ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ) ) |
| 101 |
|
fveq1 |
⊢ ( 𝑤 = ( 𝑊 ++ 〈“ 𝑣 ”〉 ) → ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) = ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) ) |
| 102 |
101 99
|
neeq12d |
⊢ ( 𝑤 = ( 𝑊 ++ 〈“ 𝑣 ”〉 ) → ( ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) |
| 103 |
100 102
|
anbi12d |
⊢ ( 𝑤 = ( 𝑊 ++ 〈“ 𝑣 ”〉 ) → ( ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) ↔ ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ) |
| 104 |
103
|
elrab |
⊢ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ { 𝑤 ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( 𝑤 ‘ 0 ) ) } ↔ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∧ ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ) |
| 105 |
98 104
|
bitr2di |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( ( 𝑁 + 2 ) ClWWalksN 𝐺 ) ∧ ( ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) = 𝑋 ∧ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁 + 2 ) − 2 ) ) ≠ ( ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ↔ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ) |
| 106 |
68 92 105
|
3bitrd |
⊢ ( ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ) |
| 107 |
106
|
reubidva |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) → ( ∃! 𝑣 ∈ 𝑉 ( { ( lastS ‘ 𝑊 ) , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑣 , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ∃! 𝑣 ∈ 𝑉 ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ) |
| 108 |
43 107
|
mpbid |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) ) → ∃! 𝑣 ∈ 𝑉 ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) |
| 109 |
108
|
ex |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑊 ) ≠ 𝑋 ) ) → ∃! 𝑣 ∈ 𝑉 ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ) |
| 110 |
13 109
|
sylbid |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑊 ∈ ( 𝑋 𝑄 𝑁 ) → ∃! 𝑣 ∈ 𝑉 ( 𝑊 ++ 〈“ 𝑣 ”〉 ) ∈ ( 𝑋 𝐻 ( 𝑁 + 2 ) ) ) ) |