| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | numclwwlk.q | ⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } ) | 
						
							| 3 |  | numclwwlk.h | ⊢ 𝐻  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 } ) | 
						
							| 4 | 1 2 | numclwwlkovq | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) | 
						
							| 5 | 4 | 3adant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  ( 𝑋 𝑄 𝑁 )  ↔  𝑊  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  ( 𝑊 ‘ 0 )  =  𝑋 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑊 ) ) | 
						
							| 10 | 9 | neeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( lastS ‘ 𝑤 )  ≠  𝑋  ↔  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 )  ↔  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) ) | 
						
							| 12 | 11 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) ) | 
						
							| 13 | 6 12 | bitrdi | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  ( 𝑋 𝑄 𝑁 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) ) ) | 
						
							| 14 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 15 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 16 | 1 15 | wwlknp | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 17 |  | peano2nn | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 19 |  | simpl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 20 | 18 19 | jca | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 22 | 21 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 23 | 16 22 | syl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 24 |  | lswlgt0cl | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 25 | 23 24 | syl6 | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑁  ∈  ℕ  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) ) | 
						
							| 27 | 26 | com12 | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) ) | 
						
							| 28 | 27 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( lastS ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 30 |  | eleq1 | ⊢ ( ( 𝑊 ‘ 0 )  =  𝑋  →  ( ( 𝑊 ‘ 0 )  ∈  𝑉  ↔  𝑋  ∈  𝑉 ) ) | 
						
							| 31 | 30 | biimprd | ⊢ ( ( 𝑊 ‘ 0 )  =  𝑋  →  ( 𝑋  ∈  𝑉  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 32 | 31 | ad2antrl | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑋  ∈  𝑉  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 33 | 32 | com12 | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 34 | 33 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) | 
						
							| 36 |  | neeq2 | ⊢ ( 𝑋  =  ( 𝑊 ‘ 0 )  →  ( ( lastS ‘ 𝑊 )  ≠  𝑋  ↔  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 37 | 36 | eqcoms | ⊢ ( ( 𝑊 ‘ 0 )  =  𝑋  →  ( ( lastS ‘ 𝑊 )  ≠  𝑋  ↔  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 38 | 37 | biimpa | ⊢ ( ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 )  →  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 41 | 29 35 40 | 3jca | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( ( lastS ‘ 𝑊 )  ∈  𝑉  ∧  ( 𝑊 ‘ 0 )  ∈  𝑉  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 42 | 1 15 | frcond2 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( ( lastS ‘ 𝑊 )  ∈  𝑉  ∧  ( 𝑊 ‘ 0 )  ∈  𝑉  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  →  ∃! 𝑣  ∈  𝑉 ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 43 | 14 41 42 | sylc | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ∃! 𝑣  ∈  𝑉 ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 44 |  | simpl | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 45 | 44 | ad2antlr | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  𝑉 ) | 
						
							| 47 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 48 | 47 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 50 | 45 46 49 | 3jca | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑣  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 51 | 1 15 | wwlksext2clwwlk | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑣  ∈  𝑉 )  →  ( ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) ) ) | 
						
							| 52 | 51 | 3adant3 | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑣  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  𝑣  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  ∧  ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) ) | 
						
							| 54 | 50 53 | sylan | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) ) | 
						
							| 55 | 1 | wwlknbp | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 56 | 55 | simp3d | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 57 | 56 | ad2antrl | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 59 | 46 | adantr | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  𝑣  ∈  𝑉 ) | 
						
							| 60 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 61 |  | nn0pzuz | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  ∈  ℤ )  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 62 | 47 60 61 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 63 | 62 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 64 | 63 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 65 |  | simpr | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) ) | 
						
							| 66 | 1 15 | clwwlkext2edg | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑣  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 67 | 58 59 64 65 66 | syl31anc | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  ∧  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) )  →  ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 68 | 54 67 | impbida | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 ) ) ) | 
						
							| 69 | 46 1 | eleqtrdi | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 70 | 38 | anim2i | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 71 | 70 | ad2antlr | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 72 | 71 | simprd | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 73 |  | numclwwlk2lem1lem | ⊢ ( ( 𝑣  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( lastS ‘ 𝑊 )  ≠  ( 𝑊 ‘ 0 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 74 | 69 45 72 73 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 75 |  | eqeq2 | ⊢ ( 𝑋  =  ( 𝑊 ‘ 0 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 76 | 75 | eqcoms | ⊢ ( ( 𝑊 ‘ 0 )  =  𝑋  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 77 | 76 | ad2antrl | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 78 | 77 | ad2antlr | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 79 | 74 | simpld | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 80 | 79 | neeq2d | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 81 | 78 80 | anbi12d | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) )  ↔  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( 𝑊 ‘ 0 ) ) ) ) | 
						
							| 82 | 74 81 | mpbird | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) | 
						
							| 83 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 84 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 85 | 83 84 | pncand | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  2 )  −  2 )  =  𝑁 ) | 
						
							| 86 | 85 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑁  +  2 )  −  2 )  =  𝑁 ) | 
						
							| 87 | 86 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑁  +  2 )  −  2 )  =  𝑁 ) | 
						
							| 88 | 87 | fveq2d | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  =  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 ) ) | 
						
							| 89 | 88 | neeq1d | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) | 
						
							| 90 | 89 | anbi2d | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) )  ↔  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 𝑁 )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ) | 
						
							| 91 | 82 90 | mpbird | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) | 
						
							| 92 | 91 | biantrud | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ) ) | 
						
							| 93 | 62 | anim2i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 94 | 93 | 3adant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 95 | 94 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 96 | 3 | numclwwlkovh | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  =  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } ) | 
						
							| 97 | 95 96 | syl | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  =  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } ) | 
						
							| 98 | 97 | eleq2d | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } ) ) | 
						
							| 99 |  | fveq1 | ⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( 𝑤 ‘ 0 )  =  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) | 
						
							| 100 | 99 | eqeq1d | ⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋 ) ) | 
						
							| 101 |  | fveq1 | ⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  =  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) ) ) | 
						
							| 102 | 101 99 | neeq12d | ⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 )  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) | 
						
							| 103 | 100 102 | anbi12d | ⊢ ( 𝑤  =  ( 𝑊  ++  〈“ 𝑣 ”〉 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) )  ↔  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ) | 
						
							| 104 | 103 | elrab | ⊢ ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) }  ↔  ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) ) ) | 
						
							| 105 | 98 104 | bitr2di | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 )  =  𝑋  ∧  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( ( 𝑊  ++  〈“ 𝑣 ”〉 ) ‘ 0 ) ) )  ↔  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) ) | 
						
							| 106 | 68 92 105 | 3bitrd | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  ∧  𝑣  ∈  𝑉 )  →  ( ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) ) | 
						
							| 107 | 106 | reubidva | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ( ∃! 𝑣  ∈  𝑉 ( { ( lastS ‘ 𝑊 ) ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑣 ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ∃! 𝑣  ∈  𝑉 ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) ) | 
						
							| 108 | 43 107 | mpbid | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) ) )  →  ∃! 𝑣  ∈  𝑉 ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) | 
						
							| 109 | 108 | ex | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑊 )  ≠  𝑋 ) )  →  ∃! 𝑣  ∈  𝑉 ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) ) | 
						
							| 110 | 13 109 | sylbid | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  ∈  ( 𝑋 𝑄 𝑁 )  →  ∃! 𝑣  ∈  𝑉 ( 𝑊  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) ) |