| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frcond1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frcond1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | frcond1 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  →  ∃! 𝑏  ∈  𝑉 { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 ) ) | 
						
							| 4 |  | prex | ⊢ { 𝐴 ,  𝑏 }  ∈  V | 
						
							| 5 |  | prex | ⊢ { 𝑏 ,  𝐶 }  ∈  V | 
						
							| 6 | 4 5 | prss | ⊢ ( ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 )  ↔  { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸 ) | 
						
							| 7 | 6 | bicomi | ⊢ ( { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸  ↔  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 8 | 7 | reubii | ⊢ ( ∃! 𝑏  ∈  𝑉 { { 𝐴 ,  𝑏 } ,  { 𝑏 ,  𝐶 } }  ⊆  𝐸  ↔  ∃! 𝑏  ∈  𝑉 ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 9 | 3 8 | imbitrdi | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  →  ∃! 𝑏  ∈  𝑉 ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) |