Metamath Proof Explorer


Theorem frgreu

Description: Variant of frcond2 : Any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 12-May-2021) (Proof shortened by AV, 4-Jan-2022)

Ref Expression
Hypotheses frcond1.v 𝑉 = ( Vtx ‘ 𝐺 )
frcond1.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion frgreu ( 𝐺 ∈ FriendGraph → ( ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) → ∃! 𝑏 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 frcond1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frcond1.e 𝐸 = ( Edg ‘ 𝐺 )
3 1 2 frcond2 ( 𝐺 ∈ FriendGraph → ( ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) → ∃! 𝑏𝑉 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) )
4 3 imp ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ) → ∃! 𝑏𝑉 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) )
5 frgrusgr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
6 5 adantr ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ) → 𝐺 ∈ USGraph )
7 simpl ( ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) → { 𝐴 , 𝑏 } ∈ 𝐸 )
8 2 1 usgrpredgv ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ) → ( 𝐴𝑉𝑏𝑉 ) )
9 8 simprd ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ) → 𝑏𝑉 )
10 6 7 9 syl2an ( ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ) ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) → 𝑏𝑉 )
11 10 reueubd ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ) → ( ∃! 𝑏𝑉 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ↔ ∃! 𝑏 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) )
12 4 11 mpbid ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ) → ∃! 𝑏 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) )
13 12 ex ( 𝐺 ∈ FriendGraph → ( ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) → ∃! 𝑏 ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) )