Metamath Proof Explorer


Theorem frgreu

Description: Variant of frcond2 : Any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 12-May-2021) (Proof shortened by AV, 4-Jan-2022)

Ref Expression
Hypotheses frcond1.v
|- V = ( Vtx ` G )
frcond1.e
|- E = ( Edg ` G )
Assertion frgreu
|- ( G e. FriendGraph -> ( ( A e. V /\ C e. V /\ A =/= C ) -> E! b ( { A , b } e. E /\ { b , C } e. E ) ) )

Proof

Step Hyp Ref Expression
1 frcond1.v
 |-  V = ( Vtx ` G )
2 frcond1.e
 |-  E = ( Edg ` G )
3 1 2 frcond2
 |-  ( G e. FriendGraph -> ( ( A e. V /\ C e. V /\ A =/= C ) -> E! b e. V ( { A , b } e. E /\ { b , C } e. E ) ) )
4 3 imp
 |-  ( ( G e. FriendGraph /\ ( A e. V /\ C e. V /\ A =/= C ) ) -> E! b e. V ( { A , b } e. E /\ { b , C } e. E ) )
5 frgrusgr
 |-  ( G e. FriendGraph -> G e. USGraph )
6 5 adantr
 |-  ( ( G e. FriendGraph /\ ( A e. V /\ C e. V /\ A =/= C ) ) -> G e. USGraph )
7 simpl
 |-  ( ( { A , b } e. E /\ { b , C } e. E ) -> { A , b } e. E )
8 2 1 usgrpredgv
 |-  ( ( G e. USGraph /\ { A , b } e. E ) -> ( A e. V /\ b e. V ) )
9 8 simprd
 |-  ( ( G e. USGraph /\ { A , b } e. E ) -> b e. V )
10 6 7 9 syl2an
 |-  ( ( ( G e. FriendGraph /\ ( A e. V /\ C e. V /\ A =/= C ) ) /\ ( { A , b } e. E /\ { b , C } e. E ) ) -> b e. V )
11 10 reueubd
 |-  ( ( G e. FriendGraph /\ ( A e. V /\ C e. V /\ A =/= C ) ) -> ( E! b e. V ( { A , b } e. E /\ { b , C } e. E ) <-> E! b ( { A , b } e. E /\ { b , C } e. E ) ) )
12 4 11 mpbid
 |-  ( ( G e. FriendGraph /\ ( A e. V /\ C e. V /\ A =/= C ) ) -> E! b ( { A , b } e. E /\ { b , C } e. E ) )
13 12 ex
 |-  ( G e. FriendGraph -> ( ( A e. V /\ C e. V /\ A =/= C ) -> E! b ( { A , b } e. E /\ { b , C } e. E ) ) )