Metamath Proof Explorer


Theorem frcond2

Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 29-Mar-2021)

Ref Expression
Hypotheses frcond1.v
|- V = ( Vtx ` G )
frcond1.e
|- E = ( Edg ` G )
Assertion frcond2
|- ( G e. FriendGraph -> ( ( A e. V /\ C e. V /\ A =/= C ) -> E! b e. V ( { A , b } e. E /\ { b , C } e. E ) ) )

Proof

Step Hyp Ref Expression
1 frcond1.v
 |-  V = ( Vtx ` G )
2 frcond1.e
 |-  E = ( Edg ` G )
3 1 2 frcond1
 |-  ( G e. FriendGraph -> ( ( A e. V /\ C e. V /\ A =/= C ) -> E! b e. V { { A , b } , { b , C } } C_ E ) )
4 prex
 |-  { A , b } e. _V
5 prex
 |-  { b , C } e. _V
6 4 5 prss
 |-  ( ( { A , b } e. E /\ { b , C } e. E ) <-> { { A , b } , { b , C } } C_ E )
7 6 bicomi
 |-  ( { { A , b } , { b , C } } C_ E <-> ( { A , b } e. E /\ { b , C } e. E ) )
8 7 reubii
 |-  ( E! b e. V { { A , b } , { b , C } } C_ E <-> E! b e. V ( { A , b } e. E /\ { b , C } e. E ) )
9 3 8 syl6ib
 |-  ( G e. FriendGraph -> ( ( A e. V /\ C e. V /\ A =/= C ) -> E! b e. V ( { A , b } e. E /\ { b , C } e. E ) ) )