| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlkovh.h |  |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
							| 2 | 1 | numclwwlkovh0 |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) | 
						
							| 3 |  | isclwwlknon |  |-  ( w e. ( X ( ClWWalksNOn ` G ) N ) <-> ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) ) | 
						
							| 4 | 3 | anbi1i |  |-  ( ( w e. ( X ( ClWWalksNOn ` G ) N ) /\ ( w ` ( N - 2 ) ) =/= X ) <-> ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) ) | 
						
							| 5 |  | simpll |  |-  ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> w e. ( N ClWWalksN G ) ) | 
						
							| 6 |  | simplr |  |-  ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> ( w ` 0 ) = X ) | 
						
							| 7 |  | neeq2 |  |-  ( X = ( w ` 0 ) -> ( ( w ` ( N - 2 ) ) =/= X <-> ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) | 
						
							| 8 | 7 | eqcoms |  |-  ( ( w ` 0 ) = X -> ( ( w ` ( N - 2 ) ) =/= X <-> ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( ( w ` ( N - 2 ) ) =/= X <-> ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) | 
						
							| 11 | 6 10 | jca |  |-  ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) | 
						
							| 12 | 5 11 | jca |  |-  ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) ) | 
						
							| 13 |  | simpl |  |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) -> ( w ` 0 ) = X ) | 
						
							| 14 | 13 | anim2i |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) -> ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) ) | 
						
							| 15 |  | neeq2 |  |-  ( ( w ` 0 ) = X -> ( ( w ` ( N - 2 ) ) =/= ( w ` 0 ) <-> ( w ` ( N - 2 ) ) =/= X ) ) | 
						
							| 16 | 15 | biimpa |  |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) -> ( w ` ( N - 2 ) ) =/= X ) | 
						
							| 17 | 16 | adantl |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) -> ( w ` ( N - 2 ) ) =/= X ) | 
						
							| 18 | 14 17 | jca |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) -> ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) ) | 
						
							| 19 | 12 18 | impbii |  |-  ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) <-> ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) ) | 
						
							| 20 | 4 19 | bitri |  |-  ( ( w e. ( X ( ClWWalksNOn ` G ) N ) /\ ( w ` ( N - 2 ) ) =/= X ) <-> ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) ) | 
						
							| 21 | 20 | rabbia2 |  |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } = { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) } | 
						
							| 22 | 2 21 | eqtrdi |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) } ) |