| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlkovh.h | 
							 |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
						
							| 2 | 
							
								
							 | 
							oveq12 | 
							 |-  ( ( v = X /\ n = N ) -> ( v ( ClWWalksNOn ` G ) n ) = ( X ( ClWWalksNOn ` G ) N ) )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = N -> ( n - 2 ) = ( N - 2 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							 |-  ( ( v = X /\ n = N ) -> ( n - 2 ) = ( N - 2 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							fveq2d | 
							 |-  ( ( v = X /\ n = N ) -> ( w ` ( n - 2 ) ) = ( w ` ( N - 2 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl | 
							 |-  ( ( v = X /\ n = N ) -> v = X )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							neeq12d | 
							 |-  ( ( v = X /\ n = N ) -> ( ( w ` ( n - 2 ) ) =/= v <-> ( w ` ( N - 2 ) ) =/= X ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							rabeqbidv | 
							 |-  ( ( v = X /\ n = N ) -> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) | 
						
						
							| 9 | 
							
								
							 | 
							ovex | 
							 |-  ( X ( ClWWalksNOn ` G ) N ) e. _V  | 
						
						
							| 10 | 
							
								9
							 | 
							rabex | 
							 |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } e. _V | 
						
						
							| 11 | 
							
								8 1 10
							 | 
							ovmpoa | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) |