| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlkovh.h | 
							⊢ 𝐻  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 } )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq12 | 
							⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  𝑁  →  ( 𝑛  −  2 )  =  ( 𝑁  −  2 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( 𝑛  −  2 )  =  ( 𝑁  −  2 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							fveq2d | 
							⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  ( 𝑤 ‘ ( 𝑁  −  2 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  𝑣  =  𝑋 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							neeq12d | 
							⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣  ↔  ( 𝑤 ‘ ( 𝑁  −  2 ) )  ≠  𝑋 ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							rabeqbidv | 
							⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 }  =  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  ≠  𝑋 } )  | 
						
						
							| 9 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  V  | 
						
						
							| 10 | 
							
								9
							 | 
							rabex | 
							⊢ { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  ≠  𝑋 }  ∈  V  | 
						
						
							| 11 | 
							
								8 1 10
							 | 
							ovmpoa | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑋 𝐻 𝑁 )  =  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  ≠  𝑋 } )  |