Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 25-Dec-2017) (Revised by AV, 4-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | hasheqf1oi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hasheqf1o | |
|
2 | 1 | biimprd | |
3 | 2 | a1d | |
4 | fiinfnf1o | |
|
5 | 4 | pm2.21d | |
6 | 5 | a1d | |
7 | fiinfnf1o | |
|
8 | 19.41v | |
|
9 | f1orel | |
|
10 | 9 | adantr | |
11 | f1ocnvb | |
|
12 | 10 11 | syl | |
13 | f1of | |
|
14 | fex | |
|
15 | 13 14 | sylan | |
16 | cnvexg | |
|
17 | f1oeq1 | |
|
18 | 17 | spcegv | |
19 | 15 16 18 | 3syl | |
20 | pm2.24 | |
|
21 | 19 20 | syl6 | |
22 | 12 21 | sylbid | |
23 | 22 | com12 | |
24 | 23 | anabsi5 | |
25 | 24 | exlimiv | |
26 | 8 25 | sylbir | |
27 | 26 | ex | |
28 | 27 | com13 | |
29 | 7 28 | syl | |
30 | 29 | ancoms | |
31 | hashinf | |
|
32 | 31 | expcom | |
33 | 32 | adantr | |
34 | 33 | imp | |
35 | 34 | adantr | |
36 | simpr | |
|
37 | f1ofo | |
|
38 | focdmex | |
|
39 | 38 | imp | |
40 | 36 37 39 | syl2an | |
41 | hashinf | |
|
42 | 41 | expcom | |
43 | 42 | ad3antlr | |
44 | 40 43 | mpd | |
45 | 35 44 | eqtr4d | |
46 | 45 | ex | |
47 | 46 | exlimdv | |
48 | 47 | ex | |
49 | 3 6 30 48 | 4cases | |