| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2z |  |-  ( K e. ZZ -> ( K + 1 ) e. ZZ ) | 
						
							| 2 |  | 1z |  |-  1 e. ZZ | 
						
							| 3 |  | fzsubel |  |-  ( ( ( 1 e. ZZ /\ N e. ZZ ) /\ ( ( K + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 4 | 2 3 | mpanl1 |  |-  ( ( N e. ZZ /\ ( ( K + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 5 | 2 4 | mpanr2 |  |-  ( ( N e. ZZ /\ ( K + 1 ) e. ZZ ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 6 | 1 5 | sylan2 |  |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 8 |  | zcn |  |-  ( K e. ZZ -> K e. CC ) | 
						
							| 9 |  | ax-1cn |  |-  1 e. CC | 
						
							| 10 |  | pncan |  |-  ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) | 
						
							| 11 | 8 9 10 | sylancl |  |-  ( K e. ZZ -> ( ( K + 1 ) - 1 ) = K ) | 
						
							| 12 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 13 | 12 | oveq1i |  |-  ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) | 
						
							| 14 | 13 | a1i |  |-  ( K e. ZZ -> ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 15 | 11 14 | eleq12d |  |-  ( K e. ZZ -> ( ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) <-> K e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) <-> K e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 17 | 7 16 | bitr2d |  |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 0 ... ( N - 1 ) ) <-> ( K + 1 ) e. ( 1 ... N ) ) ) |