| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | numclwwlk.q | ⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } ) | 
						
							| 3 |  | numclwwlk.h | ⊢ 𝐻  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 } ) | 
						
							| 4 |  | numclwwlk.r | ⊢ 𝑅  =  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↦  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 5 |  | eleq1w | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 8 | 6 7 | eqeq12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑅 ‘ 𝑦 )  =  ( 𝑦  prefix  ( 𝑁  +  1 ) )  ↔  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 9 | 5 8 | imbi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑦  prefix  ( 𝑁  +  1 ) ) )  ↔  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑦  =  𝑥  →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑦  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑦  prefix  ( 𝑁  +  1 ) ) ) )  ↔  ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) ) ) | 
						
							| 11 | 1 2 3 4 | numclwlk2lem2fv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑦  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑦 )  =  ( 𝑦  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 12 | 10 11 | chvarvv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 13 | 12 | 3adant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑅 ‘ 𝑥 )  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 15 | 1 2 3 4 | numclwlk2lem2f | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑅 : ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ⟶ ( 𝑋 𝑄 𝑁 ) ) | 
						
							| 16 | 15 | ffvelcdmda | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑅 ‘ 𝑥 )  ∈  ( 𝑋 𝑄 𝑁 ) ) | 
						
							| 17 | 14 16 | eqeltrrd | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑋 𝑄 𝑁 ) ) | 
						
							| 18 | 17 | ralrimiva | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑋 𝑄 𝑁 ) ) | 
						
							| 19 | 1 2 3 | numclwwlk2lem1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  →  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑢  ∈  ( 𝑋 𝑄 𝑁 ) )  →  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) | 
						
							| 21 | 1 2 | numclwwlkovq | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) | 
						
							| 22 | 21 | eleq2d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  ↔  𝑢  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) ) | 
						
							| 23 | 22 | 3adant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  ↔  𝑢  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) ) | 
						
							| 24 |  | fveq1 | ⊢ ( 𝑤  =  𝑢  →  ( 𝑤 ‘ 0 )  =  ( 𝑢 ‘ 0 ) ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( 𝑤  =  𝑢  →  ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  ( 𝑢 ‘ 0 )  =  𝑋 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑤  =  𝑢  →  ( lastS ‘ 𝑤 )  =  ( lastS ‘ 𝑢 ) ) | 
						
							| 27 | 26 | neeq1d | ⊢ ( 𝑤  =  𝑢  →  ( ( lastS ‘ 𝑤 )  ≠  𝑋  ↔  ( lastS ‘ 𝑢 )  ≠  𝑋 ) ) | 
						
							| 28 | 25 27 | anbi12d | ⊢ ( 𝑤  =  𝑢  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 )  ↔  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) ) ) | 
						
							| 29 | 28 | elrab | ⊢ ( 𝑢  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  ↔  ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) ) ) | 
						
							| 30 | 23 29 | bitrdi | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  ↔  ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) ) ) ) | 
						
							| 31 |  | wwlknbp1 | ⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 32 |  | 3simpc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( 𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 34 | 1 | wrdeqi | ⊢ Word  𝑉  =  Word  ( Vtx ‘ 𝐺 ) | 
						
							| 35 | 34 | eleq2i | ⊢ ( 𝑢  ∈  Word  𝑉  ↔  𝑢  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 36 | 35 | anbi1i | ⊢ ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ↔  ( 𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 37 | 33 36 | sylibr | ⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 38 |  | simpll | ⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  𝑢  ∈  Word  𝑉 ) | 
						
							| 39 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 40 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 41 | 40 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 42 | 41 | nnzd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℤ ) | 
						
							| 43 |  | nn0pzuz | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  ∈  ℤ )  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 44 | 39 42 43 | syl2anc | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 45 | 3 | numclwwlkovh | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑁  +  2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  =  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } ) | 
						
							| 46 | 44 45 | sylan2 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  =  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } ) | 
						
							| 47 | 46 | eleq2d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  𝑥  ∈  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) } ) ) | 
						
							| 48 |  | fveq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ‘ 0 )  =  ( 𝑥 ‘ 0 ) ) | 
						
							| 49 | 48 | eqeq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤 ‘ 0 )  =  𝑋  ↔  ( 𝑥 ‘ 0 )  =  𝑋 ) ) | 
						
							| 50 |  | fveq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  =  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) ) ) | 
						
							| 51 | 50 48 | neeq12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 )  ↔  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) | 
						
							| 52 | 49 51 | anbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) )  ↔  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) ) | 
						
							| 53 | 52 | elrab | ⊢ ( 𝑥  ∈  { 𝑤  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑤 ‘ 0 ) ) }  ↔  ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) ) | 
						
							| 54 | 47 53 | bitrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) ) ) | 
						
							| 55 | 54 | 3adant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↔  ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) ) ) ) | 
						
							| 57 | 1 | clwwlknbp | ⊢ ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 ) ) ) | 
						
							| 58 |  | lencl | ⊢ ( 𝑢  ∈  Word  𝑉  →  ( ♯ ‘ 𝑢 )  ∈  ℕ0 ) | 
						
							| 59 |  | simprr | ⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  𝑥  ∈  Word  𝑉 ) | 
						
							| 60 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 61 | 60 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  =  ( 1  +  1 ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  =  ( 𝑁  +  ( 1  +  1 ) ) ) | 
						
							| 63 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 64 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 65 | 63 64 64 | addassd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  ( 1  +  1 ) ) ) | 
						
							| 66 | 62 65 | eqtr4d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  2 )  =  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  +  2 )  =  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 68 | 67 | eqeq2d | ⊢ ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ↔  ( ♯ ‘ 𝑥 )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 69 | 68 | biimpcd | ⊢ ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  →  ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ 𝑥 )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ 𝑥 )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) | 
						
							| 71 | 70 | impcom | ⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  ( ♯ ‘ 𝑥 )  =  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 72 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑢 )  +  1 )  =  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 73 | 72 | ad3antlr | ⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  ( ( ♯ ‘ 𝑢 )  +  1 )  =  ( ( 𝑁  +  1 )  +  1 ) ) | 
						
							| 74 | 71 73 | eqtr4d | ⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) | 
						
							| 75 | 59 74 | jca | ⊢ ( ( ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  𝑁  ∈  ℕ )  ∧  ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) | 
						
							| 76 | 75 | exp31 | ⊢ ( ( ( ♯ ‘ 𝑢 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) ) | 
						
							| 77 | 58 76 | sylan | ⊢ ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ℕ  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) ) | 
						
							| 78 | 77 | com12 | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) ) | 
						
							| 79 | 78 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) ) | 
						
							| 80 | 79 | impcom | ⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) | 
						
							| 81 | 80 | com12 | ⊢ ( ( ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 )  ∧  𝑥  ∈  Word  𝑉 )  →  ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) | 
						
							| 82 | 81 | ancoms | ⊢ ( ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( 𝑁  +  2 ) )  →  ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) | 
						
							| 83 | 57 82 | syl | ⊢ ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  →  ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) )  →  ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) | 
						
							| 85 | 84 | com12 | ⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝑥  ∈  ( ( 𝑁  +  2 )  ClWWalksN  𝐺 )  ∧  ( ( 𝑥 ‘ 0 )  =  𝑋  ∧  ( 𝑥 ‘ ( ( 𝑁  +  2 )  −  2 ) )  ≠  ( 𝑥 ‘ 0 ) ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) | 
						
							| 86 | 56 85 | sylbid | ⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) | 
						
							| 87 | 86 | ralrimiv | ⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) | 
						
							| 88 | 38 87 | jca | ⊢ ( ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) | 
						
							| 89 | 88 | ex | ⊢ ( ( 𝑢  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) ) | 
						
							| 90 | 37 89 | syl | ⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) ) | 
						
							| 92 | 91 | imp | ⊢ ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) ) ) | 
						
							| 93 |  | nfcv | ⊢ Ⅎ 𝑣 𝑋 | 
						
							| 94 |  | nfmpo1 | ⊢ Ⅎ 𝑣 ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 } ) | 
						
							| 95 | 3 94 | nfcxfr | ⊢ Ⅎ 𝑣 𝐻 | 
						
							| 96 |  | nfcv | ⊢ Ⅎ 𝑣 ( 𝑁  +  2 ) | 
						
							| 97 | 93 95 96 | nfov | ⊢ Ⅎ 𝑣 ( 𝑋 𝐻 ( 𝑁  +  2 ) ) | 
						
							| 98 | 97 | reuccatpfxs1 | ⊢ ( ( 𝑢  ∈  Word  𝑉  ∧  ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑥 )  =  ( ( ♯ ‘ 𝑢 )  +  1 ) ) )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) ) | 
						
							| 99 | 92 98 | syl | ⊢ ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) ) | 
						
							| 100 | 99 | imp | ⊢ ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) | 
						
							| 101 | 31 | simp3d | ⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ♯ ‘ 𝑢 )  =  ( 𝑁  +  1 ) ) | 
						
							| 102 | 101 | eqcomd | ⊢ ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  +  1 )  =  ( ♯ ‘ 𝑢 ) ) | 
						
							| 103 | 102 | ad4antr | ⊢ ( ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑁  +  1 )  =  ( ♯ ‘ 𝑢 ) ) | 
						
							| 104 | 103 | oveq2d | ⊢ ( ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑥  prefix  ( 𝑁  +  1 ) )  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) | 
						
							| 105 | 104 | eqeq2d | ⊢ ( ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  ∧  𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ↔  𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) ) | 
						
							| 106 | 105 | reubidva | ⊢ ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ( ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) )  ↔  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( ♯ ‘ 𝑢 ) ) ) ) | 
						
							| 107 | 100 106 | mpbird | ⊢ ( ( ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ ) )  ∧  ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 108 | 107 | exp31 | ⊢ ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 109 | 108 | com12 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑢  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑢 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑢 )  ≠  𝑋 ) )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 110 | 30 109 | sylbid | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑢  ∈  ( 𝑋 𝑄 𝑁 )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 111 | 110 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑢  ∈  ( 𝑋 𝑄 𝑁 ) )  →  ( ∃! 𝑣  ∈  𝑉 ( 𝑢  ++  〈“ 𝑣 ”〉 )  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 112 | 20 111 | mpd | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  𝑢  ∈  ( 𝑋 𝑄 𝑁 ) )  →  ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 113 | 112 | ralrimiva | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ∀ 𝑢  ∈  ( 𝑋 𝑄 𝑁 ) ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 114 | 4 | f1ompt | ⊢ ( 𝑅 : ( 𝑋 𝐻 ( 𝑁  +  2 ) ) –1-1-onto→ ( 𝑋 𝑄 𝑁 )  ↔  ( ∀ 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ( 𝑥  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑋 𝑄 𝑁 )  ∧  ∀ 𝑢  ∈  ( 𝑋 𝑄 𝑁 ) ∃! 𝑥  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) ) 𝑢  =  ( 𝑥  prefix  ( 𝑁  +  1 ) ) ) ) | 
						
							| 115 | 18 113 114 | sylanbrc | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  𝑅 : ( 𝑋 𝐻 ( 𝑁  +  2 ) ) –1-1-onto→ ( 𝑋 𝑄 𝑁 ) ) |