Step |
Hyp |
Ref |
Expression |
1 |
|
fmpt.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
2 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
3 |
|
dff1o4 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ◡ 𝐹 Fn 𝐵 ) ) |
4 |
3
|
baib |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ◡ 𝐹 Fn 𝐵 ) ) |
5 |
2 4
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ◡ 𝐹 Fn 𝐵 ) ) |
6 |
|
fnres |
⊢ ( ( ◡ 𝐹 ↾ 𝐵 ) Fn 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃! 𝑧 𝑦 ◡ 𝐹 𝑧 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
8 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
9 |
1 8
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
11 |
7 9 10
|
nfbr |
⊢ Ⅎ 𝑥 𝑧 𝐹 𝑦 |
12 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) |
13 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐹 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
14 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
15 |
1 14
|
eqtri |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
16 |
15
|
breqi |
⊢ ( 𝑥 𝐹 𝑦 ↔ 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } 𝑦 ) |
17 |
|
df-br |
⊢ ( 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ) |
18 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) |
19 |
17 18
|
bitri |
⊢ ( 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) |
20 |
16 19
|
bitri |
⊢ ( 𝑥 𝐹 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) |
21 |
13 20
|
bitrdi |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐹 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) ) |
22 |
11 12 21
|
cbveuw |
⊢ ( ∃! 𝑧 𝑧 𝐹 𝑦 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) |
23 |
|
vex |
⊢ 𝑦 ∈ V |
24 |
|
vex |
⊢ 𝑧 ∈ V |
25 |
23 24
|
brcnv |
⊢ ( 𝑦 ◡ 𝐹 𝑧 ↔ 𝑧 𝐹 𝑦 ) |
26 |
25
|
eubii |
⊢ ( ∃! 𝑧 𝑦 ◡ 𝐹 𝑧 ↔ ∃! 𝑧 𝑧 𝐹 𝑦 ) |
27 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) |
28 |
22 26 27
|
3bitr4i |
⊢ ( ∃! 𝑧 𝑦 ◡ 𝐹 𝑧 ↔ ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
29 |
28
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∃! 𝑧 𝑦 ◡ 𝐹 𝑧 ↔ ∀ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
30 |
6 29
|
bitri |
⊢ ( ( ◡ 𝐹 ↾ 𝐵 ) Fn 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
31 |
|
relcnv |
⊢ Rel ◡ 𝐹 |
32 |
|
df-rn |
⊢ ran 𝐹 = dom ◡ 𝐹 |
33 |
|
frn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ran 𝐹 ⊆ 𝐵 ) |
34 |
32 33
|
eqsstrrid |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom ◡ 𝐹 ⊆ 𝐵 ) |
35 |
|
relssres |
⊢ ( ( Rel ◡ 𝐹 ∧ dom ◡ 𝐹 ⊆ 𝐵 ) → ( ◡ 𝐹 ↾ 𝐵 ) = ◡ 𝐹 ) |
36 |
31 34 35
|
sylancr |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐹 ↾ 𝐵 ) = ◡ 𝐹 ) |
37 |
36
|
fneq1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( ◡ 𝐹 ↾ 𝐵 ) Fn 𝐵 ↔ ◡ 𝐹 Fn 𝐵 ) ) |
38 |
30 37
|
bitr3id |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ↔ ◡ 𝐹 Fn 𝐵 ) ) |
39 |
5 38
|
bitr4d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
40 |
39
|
pm5.32i |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
41 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
42 |
41
|
pm4.71ri |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |
43 |
1
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
44 |
43
|
anbi1i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
45 |
40 42 44
|
3bitr4i |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |