Metamath Proof Explorer


Theorem f1ompt

Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015) (Revised by Mario Carneiro, 4-Dec-2016)

Ref Expression
Hypothesis fmpt.1 F=xAC
Assertion f1ompt F:A1-1 ontoBxACByB∃!xAy=C

Proof

Step Hyp Ref Expression
1 fmpt.1 F=xAC
2 ffn F:ABFFnA
3 dff1o4 F:A1-1 ontoBFFnAF-1FnB
4 3 baib FFnAF:A1-1 ontoBF-1FnB
5 2 4 syl F:ABF:A1-1 ontoBF-1FnB
6 fnres F-1BFnByB∃!zyF-1z
7 nfcv _xz
8 nfmpt1 _xxAC
9 1 8 nfcxfr _xF
10 nfcv _xy
11 7 9 10 nfbr xzFy
12 nfv zxAy=C
13 breq1 z=xzFyxFy
14 df-mpt xAC=xy|xAy=C
15 1 14 eqtri F=xy|xAy=C
16 15 breqi xFyxxy|xAy=Cy
17 df-br xxy|xAy=Cyxyxy|xAy=C
18 opabidw xyxy|xAy=CxAy=C
19 17 18 bitri xxy|xAy=CyxAy=C
20 16 19 bitri xFyxAy=C
21 13 20 bitrdi z=xzFyxAy=C
22 11 12 21 cbveuw ∃!zzFy∃!xxAy=C
23 vex yV
24 vex zV
25 23 24 brcnv yF-1zzFy
26 25 eubii ∃!zyF-1z∃!zzFy
27 df-reu ∃!xAy=C∃!xxAy=C
28 22 26 27 3bitr4i ∃!zyF-1z∃!xAy=C
29 28 ralbii yB∃!zyF-1zyB∃!xAy=C
30 6 29 bitri F-1BFnByB∃!xAy=C
31 relcnv RelF-1
32 df-rn ranF=domF-1
33 frn F:ABranFB
34 32 33 eqsstrrid F:ABdomF-1B
35 relssres RelF-1domF-1BF-1B=F-1
36 31 34 35 sylancr F:ABF-1B=F-1
37 36 fneq1d F:ABF-1BFnBF-1FnB
38 30 37 bitr3id F:AByB∃!xAy=CF-1FnB
39 5 38 bitr4d F:ABF:A1-1 ontoByB∃!xAy=C
40 39 pm5.32i F:ABF:A1-1 ontoBF:AByB∃!xAy=C
41 f1of F:A1-1 ontoBF:AB
42 41 pm4.71ri F:A1-1 ontoBF:ABF:A1-1 ontoB
43 1 fmpt xACBF:AB
44 43 anbi1i xACByB∃!xAy=CF:AByB∃!xAy=C
45 40 42 44 3bitr4i F:A1-1 ontoBxACByB∃!xAy=C