Metamath Proof Explorer


Theorem f1ompt

Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015) (Revised by Mario Carneiro, 4-Dec-2016)

Ref Expression
Hypothesis fmpt.1 F = x A C
Assertion f1ompt F : A 1-1 onto B x A C B y B ∃! x A y = C

Proof

Step Hyp Ref Expression
1 fmpt.1 F = x A C
2 ffn F : A B F Fn A
3 dff1o4 F : A 1-1 onto B F Fn A F -1 Fn B
4 3 baib F Fn A F : A 1-1 onto B F -1 Fn B
5 2 4 syl F : A B F : A 1-1 onto B F -1 Fn B
6 fnres F -1 B Fn B y B ∃! z y F -1 z
7 nfcv _ x z
8 nfmpt1 _ x x A C
9 1 8 nfcxfr _ x F
10 nfcv _ x y
11 7 9 10 nfbr x z F y
12 nfv z x A y = C
13 breq1 z = x z F y x F y
14 df-mpt x A C = x y | x A y = C
15 1 14 eqtri F = x y | x A y = C
16 15 breqi x F y x x y | x A y = C y
17 df-br x x y | x A y = C y x y x y | x A y = C
18 opabidw x y x y | x A y = C x A y = C
19 17 18 bitri x x y | x A y = C y x A y = C
20 16 19 bitri x F y x A y = C
21 13 20 bitrdi z = x z F y x A y = C
22 11 12 21 cbveuw ∃! z z F y ∃! x x A y = C
23 vex y V
24 vex z V
25 23 24 brcnv y F -1 z z F y
26 25 eubii ∃! z y F -1 z ∃! z z F y
27 df-reu ∃! x A y = C ∃! x x A y = C
28 22 26 27 3bitr4i ∃! z y F -1 z ∃! x A y = C
29 28 ralbii y B ∃! z y F -1 z y B ∃! x A y = C
30 6 29 bitri F -1 B Fn B y B ∃! x A y = C
31 relcnv Rel F -1
32 df-rn ran F = dom F -1
33 frn F : A B ran F B
34 32 33 eqsstrrid F : A B dom F -1 B
35 relssres Rel F -1 dom F -1 B F -1 B = F -1
36 31 34 35 sylancr F : A B F -1 B = F -1
37 36 fneq1d F : A B F -1 B Fn B F -1 Fn B
38 30 37 bitr3id F : A B y B ∃! x A y = C F -1 Fn B
39 5 38 bitr4d F : A B F : A 1-1 onto B y B ∃! x A y = C
40 39 pm5.32i F : A B F : A 1-1 onto B F : A B y B ∃! x A y = C
41 f1of F : A 1-1 onto B F : A B
42 41 pm4.71ri F : A 1-1 onto B F : A B F : A 1-1 onto B
43 1 fmpt x A C B F : A B
44 43 anbi1i x A C B y B ∃! x A y = C F : A B y B ∃! x A y = C
45 40 42 44 3bitr4i F : A 1-1 onto B x A C B y B ∃! x A y = C