| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ancom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑥 𝐹 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 2 |
|
vex |
⊢ 𝑦 ∈ V |
| 3 |
2
|
brresi |
⊢ ( 𝑥 ( 𝐹 ↾ 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) |
| 4 |
3
|
mobii |
⊢ ( ∃* 𝑦 𝑥 ( 𝐹 ↾ 𝐴 ) 𝑦 ↔ ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) |
| 5 |
|
moanimv |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ∃* 𝑦 𝑥 ( 𝐹 ↾ 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 7 |
6
|
albii |
⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝐹 ↾ 𝐴 ) 𝑦 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 8 |
|
relres |
⊢ Rel ( 𝐹 ↾ 𝐴 ) |
| 9 |
|
dffun6 |
⊢ ( Fun ( 𝐹 ↾ 𝐴 ) ↔ ( Rel ( 𝐹 ↾ 𝐴 ) ∧ ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝐹 ↾ 𝐴 ) 𝑦 ) ) |
| 10 |
8 9
|
mpbiran |
⊢ ( Fun ( 𝐹 ↾ 𝐴 ) ↔ ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝐹 ↾ 𝐴 ) 𝑦 ) |
| 11 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑥 𝐹 𝑦 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 12 |
7 10 11
|
3bitr4i |
⊢ ( Fun ( 𝐹 ↾ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 13 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) |
| 14 |
|
inss1 |
⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ 𝐴 |
| 15 |
13 14
|
eqsstri |
⊢ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 |
| 16 |
|
eqss |
⊢ ( dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ↔ ( dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ⊆ dom ( 𝐹 ↾ 𝐴 ) ) ) |
| 17 |
15 16
|
mpbiran |
⊢ ( dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ↔ 𝐴 ⊆ dom ( 𝐹 ↾ 𝐴 ) ) |
| 18 |
|
dfss3 |
⊢ ( 𝐴 ⊆ dom ( 𝐹 ↾ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ) |
| 19 |
13
|
elin2 |
⊢ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐹 ) ) |
| 20 |
19
|
baib |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ↔ 𝑥 ∈ dom 𝐹 ) ) |
| 21 |
|
vex |
⊢ 𝑥 ∈ V |
| 22 |
21
|
eldm |
⊢ ( 𝑥 ∈ dom 𝐹 ↔ ∃ 𝑦 𝑥 𝐹 𝑦 ) |
| 23 |
20 22
|
bitrdi |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ↔ ∃ 𝑦 𝑥 𝐹 𝑦 ) ) |
| 24 |
23
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ dom ( 𝐹 ↾ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ) |
| 25 |
18 24
|
bitri |
⊢ ( 𝐴 ⊆ dom ( 𝐹 ↾ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ) |
| 26 |
17 25
|
bitri |
⊢ ( dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ) |
| 27 |
12 26
|
anbi12i |
⊢ ( ( Fun ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑥 𝐹 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ) ) |
| 28 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝑥 𝐹 𝑦 ∧ ∃* 𝑦 𝑥 𝐹 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑥 𝐹 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 29 |
1 27 28
|
3bitr4i |
⊢ ( ( Fun ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝑥 𝐹 𝑦 ∧ ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 30 |
|
df-fn |
⊢ ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ↔ ( Fun ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) ) |
| 31 |
|
df-eu |
⊢ ( ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ( ∃ 𝑦 𝑥 𝐹 𝑦 ∧ ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 32 |
31
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝑥 𝐹 𝑦 ∧ ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 33 |
29 30 32
|
3bitr4i |
⊢ ( ( 𝐹 ↾ 𝐴 ) Fn 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) |