| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | numclwwlk.q | ⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } ) | 
						
							| 3 |  | numclwwlk.h | ⊢ 𝐻  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  ≠  𝑣 } ) | 
						
							| 4 |  | ovexd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ∈  V ) | 
						
							| 5 |  | eqid | ⊢ ( ℎ  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↦  ( ℎ  prefix  ( 𝑁  +  1 ) ) )  =  ( ℎ  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↦  ( ℎ  prefix  ( 𝑁  +  1 ) ) ) | 
						
							| 6 | 1 2 3 5 | numclwlk2lem2f1o | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ℎ  ∈  ( 𝑋 𝐻 ( 𝑁  +  2 ) )  ↦  ( ℎ  prefix  ( 𝑁  +  1 ) ) ) : ( 𝑋 𝐻 ( 𝑁  +  2 ) ) –1-1-onto→ ( 𝑋 𝑄 𝑁 ) ) | 
						
							| 7 | 4 6 | hasheqf1od | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑋 𝐻 ( 𝑁  +  2 ) ) )  =  ( ♯ ‘ ( 𝑋 𝑄 𝑁 ) ) ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑋 𝑄 𝑁 ) )  =  ( ♯ ‘ ( 𝑋 𝐻 ( 𝑁  +  2 ) ) ) ) |