Metamath Proof Explorer


Theorem o1le

Description: Transfer eventual boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 25-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1le.1 φM
o1le.2 φxAB𝑂1
o1le.3 φxABV
o1le.4 φxAC
o1le.5 φxAMxCB
Assertion o1le φxAC𝑂1

Proof

Step Hyp Ref Expression
1 o1le.1 φM
2 o1le.2 φxAB𝑂1
3 o1le.3 φxABV
4 o1le.4 φxAC
5 o1le.5 φxAMxCB
6 3 2 o1mptrcl φxAB
7 6 lo1o12 φxAB𝑂1xAB𝑂1
8 2 7 mpbid φxAB𝑂1
9 fvexd φxABV
10 4 abscld φxAC
11 1 8 9 10 5 lo1le φxAC𝑂1
12 4 lo1o12 φxAC𝑂1xAC𝑂1
13 11 12 mpbird φxAC𝑂1