Metamath Proof Explorer


Theorem oa0suclim

Description: Closed form expression of the value of ordinal addition for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.3 of Schloeder p. 4. See oa0 , oasuc , and oalim . (Contributed by RP, 18-Jan-2025)

Ref Expression
Assertion oa0suclim AOnBOnB=A+𝑜B=AB=sucCCOnA+𝑜B=sucA+𝑜CLimBA+𝑜B=cBA+𝑜c

Proof

Step Hyp Ref Expression
1 oa0 AOnA+𝑜=A
2 oasuc AOnCOnA+𝑜sucC=sucA+𝑜C
3 oalim AOnBOnLimBA+𝑜B=cBA+𝑜c
4 3 anassrs AOnBOnLimBA+𝑜B=cBA+𝑜c
5 1 2 4 onov0suclim AOnBOnB=A+𝑜B=AB=sucCCOnA+𝑜B=sucA+𝑜CLimBA+𝑜B=cBA+𝑜c