Step |
Hyp |
Ref |
Expression |
1 |
|
onov0suclim.0 |
|
2 |
|
onov0suclim.suc |
|
3 |
|
onov0suclim.lim |
|
4 |
|
eloni |
|
5 |
|
orduniorsuc |
|
6 |
|
unizlim |
|
7 |
6
|
biimpd |
|
8 |
7
|
orim1d |
|
9 |
5 8
|
mpd |
|
10 |
4 9
|
syl |
|
11 |
10
|
adantl |
|
12 |
|
oveq2 |
|
13 |
12 1
|
sylan9eqr |
|
14 |
13
|
ex |
|
15 |
14
|
ad2antrr |
|
16 |
|
eloni |
|
17 |
|
0elsuc |
|
18 |
16 17
|
syl |
|
19 |
18
|
adantl |
|
20 |
|
simpl |
|
21 |
19 20
|
eleqtrrd |
|
22 |
|
n0i |
|
23 |
21 22
|
syl |
|
24 |
23
|
pm2.21d |
|
25 |
24
|
adantl |
|
26 |
25
|
impancom |
|
27 |
|
nlim0 |
|
28 |
|
limeq |
|
29 |
27 28
|
mtbiri |
|
30 |
29
|
adantl |
|
31 |
30
|
pm2.21d |
|
32 |
15 26 31
|
3jca |
|
33 |
32
|
ex |
|
34 |
29
|
con2i |
|
35 |
34
|
adantl |
|
36 |
35
|
pm2.21d |
|
37 |
|
limeq |
|
38 |
37
|
notbid |
|
39 |
38
|
biimprd |
|
40 |
|
nlimsucg |
|
41 |
39 40
|
impel |
|
42 |
41
|
adantl |
|
43 |
42
|
pm2.21d |
|
44 |
43
|
impancom |
|
45 |
3
|
a1d |
|
46 |
36 44 45
|
3jca |
|
47 |
46
|
ex |
|
48 |
33 47
|
jaod |
|
49 |
|
1n0 |
|
50 |
|
necom |
|
51 |
|
df-1o |
|
52 |
|
uni0 |
|
53 |
|
suceq |
|
54 |
52 53
|
ax-mp |
|
55 |
51 54
|
eqtr4i |
|
56 |
55
|
neeq2i |
|
57 |
|
df-ne |
|
58 |
50 56 57
|
3bitri |
|
59 |
|
id |
|
60 |
|
unieq |
|
61 |
|
suceq |
|
62 |
60 61
|
syl |
|
63 |
59 62
|
eqeq12d |
|
64 |
63
|
notbid |
|
65 |
58 64
|
bitr4id |
|
66 |
49 65
|
mpbii |
|
67 |
66
|
con2i |
|
68 |
67
|
adantl |
|
69 |
68
|
pm2.21d |
|
70 |
|
simprl |
|
71 |
70
|
oveq2d |
|
72 |
2
|
adantrl |
|
73 |
71 72
|
eqtrd |
|
74 |
73
|
ex |
|
75 |
74
|
ad2antrr |
|
76 |
|
onuni |
|
77 |
|
nlimsucg |
|
78 |
76 77
|
syl |
|
79 |
|
limeq |
|
80 |
79
|
notbid |
|
81 |
80
|
biimprd |
|
82 |
78 81
|
mpan9 |
|
83 |
82
|
adantll |
|
84 |
83
|
pm2.21d |
|
85 |
69 75 84
|
3jca |
|
86 |
85
|
ex |
|
87 |
48 86
|
jaod |
|
88 |
11 87
|
mpd |
|