Metamath Proof Explorer


Theorem onov0suclim

Description: Compactly express rules for binary operations on ordinals. (Contributed by RP, 18-Jan-2025)

Ref Expression
Hypotheses onov0suclim.0 A On A ˙ = D
onov0suclim.suc A On C On A ˙ suc C = E
onov0suclim.lim A On B On Lim B A ˙ B = F
Assertion onov0suclim A On B On B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F

Proof

Step Hyp Ref Expression
1 onov0suclim.0 A On A ˙ = D
2 onov0suclim.suc A On C On A ˙ suc C = E
3 onov0suclim.lim A On B On Lim B A ˙ B = F
4 eloni B On Ord B
5 orduniorsuc Ord B B = B B = suc B
6 unizlim Ord B B = B B = Lim B
7 6 biimpd Ord B B = B B = Lim B
8 7 orim1d Ord B B = B B = suc B B = Lim B B = suc B
9 5 8 mpd Ord B B = Lim B B = suc B
10 4 9 syl B On B = Lim B B = suc B
11 10 adantl A On B On B = Lim B B = suc B
12 oveq2 B = A ˙ B = A ˙
13 12 1 sylan9eqr A On B = A ˙ B = D
14 13 ex A On B = A ˙ B = D
15 14 ad2antrr A On B On B = B = A ˙ B = D
16 eloni C On Ord C
17 0elsuc Ord C suc C
18 16 17 syl C On suc C
19 18 adantl B = suc C C On suc C
20 simpl B = suc C C On B = suc C
21 19 20 eleqtrrd B = suc C C On B
22 n0i B ¬ B =
23 21 22 syl B = suc C C On ¬ B =
24 23 pm2.21d B = suc C C On B = A ˙ B = E
25 24 adantl A On B On B = suc C C On B = A ˙ B = E
26 25 impancom A On B On B = B = suc C C On A ˙ B = E
27 nlim0 ¬ Lim
28 limeq B = Lim B Lim
29 27 28 mtbiri B = ¬ Lim B
30 29 adantl A On B On B = ¬ Lim B
31 30 pm2.21d A On B On B = Lim B A ˙ B = F
32 15 26 31 3jca A On B On B = B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F
33 32 ex A On B On B = B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F
34 29 con2i Lim B ¬ B =
35 34 adantl A On B On Lim B ¬ B =
36 35 pm2.21d A On B On Lim B B = A ˙ B = D
37 limeq B = suc C Lim B Lim suc C
38 37 notbid B = suc C ¬ Lim B ¬ Lim suc C
39 38 biimprd B = suc C ¬ Lim suc C ¬ Lim B
40 nlimsucg C On ¬ Lim suc C
41 39 40 impel B = suc C C On ¬ Lim B
42 41 adantl A On B On B = suc C C On ¬ Lim B
43 42 pm2.21d A On B On B = suc C C On Lim B A ˙ B = E
44 43 impancom A On B On Lim B B = suc C C On A ˙ B = E
45 3 a1d A On B On Lim B Lim B A ˙ B = F
46 36 44 45 3jca A On B On Lim B B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F
47 46 ex A On B On Lim B B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F
48 33 47 jaod A On B On B = Lim B B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F
49 1n0 1 𝑜
50 necom 1 𝑜 1 𝑜
51 df-1o 1 𝑜 = suc
52 uni0 =
53 suceq = suc = suc
54 52 53 ax-mp suc = suc
55 51 54 eqtr4i 1 𝑜 = suc
56 55 neeq2i 1 𝑜 suc
57 df-ne suc ¬ = suc
58 50 56 57 3bitri 1 𝑜 ¬ = suc
59 id B = B =
60 unieq B = B =
61 suceq B = suc B = suc
62 60 61 syl B = suc B = suc
63 59 62 eqeq12d B = B = suc B = suc
64 63 notbid B = ¬ B = suc B ¬ = suc
65 58 64 bitr4id B = 1 𝑜 ¬ B = suc B
66 49 65 mpbii B = ¬ B = suc B
67 66 con2i B = suc B ¬ B =
68 67 adantl A On B On B = suc B ¬ B =
69 68 pm2.21d A On B On B = suc B B = A ˙ B = D
70 simprl A On B = suc C C On B = suc C
71 70 oveq2d A On B = suc C C On A ˙ B = A ˙ suc C
72 2 adantrl A On B = suc C C On A ˙ suc C = E
73 71 72 eqtrd A On B = suc C C On A ˙ B = E
74 73 ex A On B = suc C C On A ˙ B = E
75 74 ad2antrr A On B On B = suc B B = suc C C On A ˙ B = E
76 onuni B On B On
77 nlimsucg B On ¬ Lim suc B
78 76 77 syl B On ¬ Lim suc B
79 limeq B = suc B Lim B Lim suc B
80 79 notbid B = suc B ¬ Lim B ¬ Lim suc B
81 80 biimprd B = suc B ¬ Lim suc B ¬ Lim B
82 78 81 mpan9 B On B = suc B ¬ Lim B
83 82 adantll A On B On B = suc B ¬ Lim B
84 83 pm2.21d A On B On B = suc B Lim B A ˙ B = F
85 69 75 84 3jca A On B On B = suc B B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F
86 85 ex A On B On B = suc B B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F
87 48 86 jaod A On B On B = Lim B B = suc B B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F
88 11 87 mpd A On B On B = A ˙ B = D B = suc C C On A ˙ B = E Lim B A ˙ B = F