Step |
Hyp |
Ref |
Expression |
1 |
|
onov0suclim.0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ⊗ ∅ ) = 𝐷 ) |
2 |
|
onov0suclim.suc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ suc 𝐶 ) = 𝐸 ) |
3 |
|
onov0suclim.lim |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝐵 ) → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) |
4 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
5 |
|
orduniorsuc |
⊢ ( Ord 𝐵 → ( 𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵 ) ) |
6 |
|
unizlim |
⊢ ( Ord 𝐵 → ( 𝐵 = ∪ 𝐵 ↔ ( 𝐵 = ∅ ∨ Lim 𝐵 ) ) ) |
7 |
6
|
biimpd |
⊢ ( Ord 𝐵 → ( 𝐵 = ∪ 𝐵 → ( 𝐵 = ∅ ∨ Lim 𝐵 ) ) ) |
8 |
7
|
orim1d |
⊢ ( Ord 𝐵 → ( ( 𝐵 = ∪ 𝐵 ∨ 𝐵 = suc ∪ 𝐵 ) → ( ( 𝐵 = ∅ ∨ Lim 𝐵 ) ∨ 𝐵 = suc ∪ 𝐵 ) ) ) |
9 |
5 8
|
mpd |
⊢ ( Ord 𝐵 → ( ( 𝐵 = ∅ ∨ Lim 𝐵 ) ∨ 𝐵 = suc ∪ 𝐵 ) ) |
10 |
4 9
|
syl |
⊢ ( 𝐵 ∈ On → ( ( 𝐵 = ∅ ∨ Lim 𝐵 ) ∨ 𝐵 = suc ∪ 𝐵 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 = ∅ ∨ Lim 𝐵 ) ∨ 𝐵 = suc ∪ 𝐵 ) ) |
12 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = ( 𝐴 ⊗ ∅ ) ) |
13 |
12 1
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 = ∅ ) → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) |
14 |
13
|
ex |
⊢ ( 𝐴 ∈ On → ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = ∅ ) → ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ) |
16 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
17 |
|
0elsuc |
⊢ ( Ord 𝐶 → ∅ ∈ suc 𝐶 ) |
18 |
16 17
|
syl |
⊢ ( 𝐶 ∈ On → ∅ ∈ suc 𝐶 ) |
19 |
18
|
adantl |
⊢ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ∅ ∈ suc 𝐶 ) |
20 |
|
simpl |
⊢ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → 𝐵 = suc 𝐶 ) |
21 |
19 20
|
eleqtrrd |
⊢ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ∅ ∈ 𝐵 ) |
22 |
|
n0i |
⊢ ( ∅ ∈ 𝐵 → ¬ 𝐵 = ∅ ) |
23 |
21 22
|
syl |
⊢ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ¬ 𝐵 = ∅ ) |
24 |
23
|
pm2.21d |
⊢ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) ) → ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ) |
26 |
25
|
impancom |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = ∅ ) → ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ) |
27 |
|
nlim0 |
⊢ ¬ Lim ∅ |
28 |
|
limeq |
⊢ ( 𝐵 = ∅ → ( Lim 𝐵 ↔ Lim ∅ ) ) |
29 |
27 28
|
mtbiri |
⊢ ( 𝐵 = ∅ → ¬ Lim 𝐵 ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = ∅ ) → ¬ Lim 𝐵 ) |
31 |
30
|
pm2.21d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = ∅ ) → ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) |
32 |
15 26 31
|
3jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = ∅ ) → ( ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ∧ ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) ) |
33 |
32
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 = ∅ → ( ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ∧ ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) ) ) |
34 |
29
|
con2i |
⊢ ( Lim 𝐵 → ¬ 𝐵 = ∅ ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝐵 ) → ¬ 𝐵 = ∅ ) |
36 |
35
|
pm2.21d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝐵 ) → ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ) |
37 |
|
limeq |
⊢ ( 𝐵 = suc 𝐶 → ( Lim 𝐵 ↔ Lim suc 𝐶 ) ) |
38 |
37
|
notbid |
⊢ ( 𝐵 = suc 𝐶 → ( ¬ Lim 𝐵 ↔ ¬ Lim suc 𝐶 ) ) |
39 |
38
|
biimprd |
⊢ ( 𝐵 = suc 𝐶 → ( ¬ Lim suc 𝐶 → ¬ Lim 𝐵 ) ) |
40 |
|
nlimsucg |
⊢ ( 𝐶 ∈ On → ¬ Lim suc 𝐶 ) |
41 |
39 40
|
impel |
⊢ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ¬ Lim 𝐵 ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) ) → ¬ Lim 𝐵 ) |
43 |
42
|
pm2.21d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) ) → ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ) |
44 |
43
|
impancom |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝐵 ) → ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ) |
45 |
3
|
a1d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝐵 ) → ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) |
46 |
36 44 45
|
3jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝐵 ) → ( ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ∧ ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) ) |
47 |
46
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( Lim 𝐵 → ( ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ∧ ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) ) ) |
48 |
33 47
|
jaod |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 = ∅ ∨ Lim 𝐵 ) → ( ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ∧ ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) ) ) |
49 |
|
1n0 |
⊢ 1o ≠ ∅ |
50 |
|
necom |
⊢ ( 1o ≠ ∅ ↔ ∅ ≠ 1o ) |
51 |
|
df-1o |
⊢ 1o = suc ∅ |
52 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
53 |
|
suceq |
⊢ ( ∪ ∅ = ∅ → suc ∪ ∅ = suc ∅ ) |
54 |
52 53
|
ax-mp |
⊢ suc ∪ ∅ = suc ∅ |
55 |
51 54
|
eqtr4i |
⊢ 1o = suc ∪ ∅ |
56 |
55
|
neeq2i |
⊢ ( ∅ ≠ 1o ↔ ∅ ≠ suc ∪ ∅ ) |
57 |
|
df-ne |
⊢ ( ∅ ≠ suc ∪ ∅ ↔ ¬ ∅ = suc ∪ ∅ ) |
58 |
50 56 57
|
3bitri |
⊢ ( 1o ≠ ∅ ↔ ¬ ∅ = suc ∪ ∅ ) |
59 |
|
id |
⊢ ( 𝐵 = ∅ → 𝐵 = ∅ ) |
60 |
|
unieq |
⊢ ( 𝐵 = ∅ → ∪ 𝐵 = ∪ ∅ ) |
61 |
|
suceq |
⊢ ( ∪ 𝐵 = ∪ ∅ → suc ∪ 𝐵 = suc ∪ ∅ ) |
62 |
60 61
|
syl |
⊢ ( 𝐵 = ∅ → suc ∪ 𝐵 = suc ∪ ∅ ) |
63 |
59 62
|
eqeq12d |
⊢ ( 𝐵 = ∅ → ( 𝐵 = suc ∪ 𝐵 ↔ ∅ = suc ∪ ∅ ) ) |
64 |
63
|
notbid |
⊢ ( 𝐵 = ∅ → ( ¬ 𝐵 = suc ∪ 𝐵 ↔ ¬ ∅ = suc ∪ ∅ ) ) |
65 |
58 64
|
bitr4id |
⊢ ( 𝐵 = ∅ → ( 1o ≠ ∅ ↔ ¬ 𝐵 = suc ∪ 𝐵 ) ) |
66 |
49 65
|
mpbii |
⊢ ( 𝐵 = ∅ → ¬ 𝐵 = suc ∪ 𝐵 ) |
67 |
66
|
con2i |
⊢ ( 𝐵 = suc ∪ 𝐵 → ¬ 𝐵 = ∅ ) |
68 |
67
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = suc ∪ 𝐵 ) → ¬ 𝐵 = ∅ ) |
69 |
68
|
pm2.21d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = suc ∪ 𝐵 ) → ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ) |
70 |
|
simprl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) ) → 𝐵 = suc 𝐶 ) |
71 |
70
|
oveq2d |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) ) → ( 𝐴 ⊗ 𝐵 ) = ( 𝐴 ⊗ suc 𝐶 ) ) |
72 |
2
|
adantrl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) ) → ( 𝐴 ⊗ suc 𝐶 ) = 𝐸 ) |
73 |
71 72
|
eqtrd |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) |
74 |
73
|
ex |
⊢ ( 𝐴 ∈ On → ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ) |
75 |
74
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = suc ∪ 𝐵 ) → ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ) |
76 |
|
onuni |
⊢ ( 𝐵 ∈ On → ∪ 𝐵 ∈ On ) |
77 |
|
nlimsucg |
⊢ ( ∪ 𝐵 ∈ On → ¬ Lim suc ∪ 𝐵 ) |
78 |
76 77
|
syl |
⊢ ( 𝐵 ∈ On → ¬ Lim suc ∪ 𝐵 ) |
79 |
|
limeq |
⊢ ( 𝐵 = suc ∪ 𝐵 → ( Lim 𝐵 ↔ Lim suc ∪ 𝐵 ) ) |
80 |
79
|
notbid |
⊢ ( 𝐵 = suc ∪ 𝐵 → ( ¬ Lim 𝐵 ↔ ¬ Lim suc ∪ 𝐵 ) ) |
81 |
80
|
biimprd |
⊢ ( 𝐵 = suc ∪ 𝐵 → ( ¬ Lim suc ∪ 𝐵 → ¬ Lim 𝐵 ) ) |
82 |
78 81
|
mpan9 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 = suc ∪ 𝐵 ) → ¬ Lim 𝐵 ) |
83 |
82
|
adantll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = suc ∪ 𝐵 ) → ¬ Lim 𝐵 ) |
84 |
83
|
pm2.21d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = suc ∪ 𝐵 ) → ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) |
85 |
69 75 84
|
3jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 = suc ∪ 𝐵 ) → ( ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ∧ ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) ) |
86 |
85
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 = suc ∪ 𝐵 → ( ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ∧ ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) ) ) |
87 |
48 86
|
jaod |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( 𝐵 = ∅ ∨ Lim 𝐵 ) ∨ 𝐵 = suc ∪ 𝐵 ) → ( ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ∧ ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) ) ) |
88 |
11 87
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 = ∅ → ( 𝐴 ⊗ 𝐵 ) = 𝐷 ) ∧ ( ( 𝐵 = suc 𝐶 ∧ 𝐶 ∈ On ) → ( 𝐴 ⊗ 𝐵 ) = 𝐸 ) ∧ ( Lim 𝐵 → ( 𝐴 ⊗ 𝐵 ) = 𝐹 ) ) ) |