Step |
Hyp |
Ref |
Expression |
1 |
|
onov0suclim.0 |
|- ( A e. On -> ( A .(x) (/) ) = D ) |
2 |
|
onov0suclim.suc |
|- ( ( A e. On /\ C e. On ) -> ( A .(x) suc C ) = E ) |
3 |
|
onov0suclim.lim |
|- ( ( ( A e. On /\ B e. On ) /\ Lim B ) -> ( A .(x) B ) = F ) |
4 |
|
eloni |
|- ( B e. On -> Ord B ) |
5 |
|
orduniorsuc |
|- ( Ord B -> ( B = U. B \/ B = suc U. B ) ) |
6 |
|
unizlim |
|- ( Ord B -> ( B = U. B <-> ( B = (/) \/ Lim B ) ) ) |
7 |
6
|
biimpd |
|- ( Ord B -> ( B = U. B -> ( B = (/) \/ Lim B ) ) ) |
8 |
7
|
orim1d |
|- ( Ord B -> ( ( B = U. B \/ B = suc U. B ) -> ( ( B = (/) \/ Lim B ) \/ B = suc U. B ) ) ) |
9 |
5 8
|
mpd |
|- ( Ord B -> ( ( B = (/) \/ Lim B ) \/ B = suc U. B ) ) |
10 |
4 9
|
syl |
|- ( B e. On -> ( ( B = (/) \/ Lim B ) \/ B = suc U. B ) ) |
11 |
10
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( ( B = (/) \/ Lim B ) \/ B = suc U. B ) ) |
12 |
|
oveq2 |
|- ( B = (/) -> ( A .(x) B ) = ( A .(x) (/) ) ) |
13 |
12 1
|
sylan9eqr |
|- ( ( A e. On /\ B = (/) ) -> ( A .(x) B ) = D ) |
14 |
13
|
ex |
|- ( A e. On -> ( B = (/) -> ( A .(x) B ) = D ) ) |
15 |
14
|
ad2antrr |
|- ( ( ( A e. On /\ B e. On ) /\ B = (/) ) -> ( B = (/) -> ( A .(x) B ) = D ) ) |
16 |
|
eloni |
|- ( C e. On -> Ord C ) |
17 |
|
0elsuc |
|- ( Ord C -> (/) e. suc C ) |
18 |
16 17
|
syl |
|- ( C e. On -> (/) e. suc C ) |
19 |
18
|
adantl |
|- ( ( B = suc C /\ C e. On ) -> (/) e. suc C ) |
20 |
|
simpl |
|- ( ( B = suc C /\ C e. On ) -> B = suc C ) |
21 |
19 20
|
eleqtrrd |
|- ( ( B = suc C /\ C e. On ) -> (/) e. B ) |
22 |
|
n0i |
|- ( (/) e. B -> -. B = (/) ) |
23 |
21 22
|
syl |
|- ( ( B = suc C /\ C e. On ) -> -. B = (/) ) |
24 |
23
|
pm2.21d |
|- ( ( B = suc C /\ C e. On ) -> ( B = (/) -> ( A .(x) B ) = E ) ) |
25 |
24
|
adantl |
|- ( ( ( A e. On /\ B e. On ) /\ ( B = suc C /\ C e. On ) ) -> ( B = (/) -> ( A .(x) B ) = E ) ) |
26 |
25
|
impancom |
|- ( ( ( A e. On /\ B e. On ) /\ B = (/) ) -> ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) ) |
27 |
|
nlim0 |
|- -. Lim (/) |
28 |
|
limeq |
|- ( B = (/) -> ( Lim B <-> Lim (/) ) ) |
29 |
27 28
|
mtbiri |
|- ( B = (/) -> -. Lim B ) |
30 |
29
|
adantl |
|- ( ( ( A e. On /\ B e. On ) /\ B = (/) ) -> -. Lim B ) |
31 |
30
|
pm2.21d |
|- ( ( ( A e. On /\ B e. On ) /\ B = (/) ) -> ( Lim B -> ( A .(x) B ) = F ) ) |
32 |
15 26 31
|
3jca |
|- ( ( ( A e. On /\ B e. On ) /\ B = (/) ) -> ( ( B = (/) -> ( A .(x) B ) = D ) /\ ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) /\ ( Lim B -> ( A .(x) B ) = F ) ) ) |
33 |
32
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( B = (/) -> ( ( B = (/) -> ( A .(x) B ) = D ) /\ ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) /\ ( Lim B -> ( A .(x) B ) = F ) ) ) ) |
34 |
29
|
con2i |
|- ( Lim B -> -. B = (/) ) |
35 |
34
|
adantl |
|- ( ( ( A e. On /\ B e. On ) /\ Lim B ) -> -. B = (/) ) |
36 |
35
|
pm2.21d |
|- ( ( ( A e. On /\ B e. On ) /\ Lim B ) -> ( B = (/) -> ( A .(x) B ) = D ) ) |
37 |
|
limeq |
|- ( B = suc C -> ( Lim B <-> Lim suc C ) ) |
38 |
37
|
notbid |
|- ( B = suc C -> ( -. Lim B <-> -. Lim suc C ) ) |
39 |
38
|
biimprd |
|- ( B = suc C -> ( -. Lim suc C -> -. Lim B ) ) |
40 |
|
nlimsucg |
|- ( C e. On -> -. Lim suc C ) |
41 |
39 40
|
impel |
|- ( ( B = suc C /\ C e. On ) -> -. Lim B ) |
42 |
41
|
adantl |
|- ( ( ( A e. On /\ B e. On ) /\ ( B = suc C /\ C e. On ) ) -> -. Lim B ) |
43 |
42
|
pm2.21d |
|- ( ( ( A e. On /\ B e. On ) /\ ( B = suc C /\ C e. On ) ) -> ( Lim B -> ( A .(x) B ) = E ) ) |
44 |
43
|
impancom |
|- ( ( ( A e. On /\ B e. On ) /\ Lim B ) -> ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) ) |
45 |
3
|
a1d |
|- ( ( ( A e. On /\ B e. On ) /\ Lim B ) -> ( Lim B -> ( A .(x) B ) = F ) ) |
46 |
36 44 45
|
3jca |
|- ( ( ( A e. On /\ B e. On ) /\ Lim B ) -> ( ( B = (/) -> ( A .(x) B ) = D ) /\ ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) /\ ( Lim B -> ( A .(x) B ) = F ) ) ) |
47 |
46
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( Lim B -> ( ( B = (/) -> ( A .(x) B ) = D ) /\ ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) /\ ( Lim B -> ( A .(x) B ) = F ) ) ) ) |
48 |
33 47
|
jaod |
|- ( ( A e. On /\ B e. On ) -> ( ( B = (/) \/ Lim B ) -> ( ( B = (/) -> ( A .(x) B ) = D ) /\ ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) /\ ( Lim B -> ( A .(x) B ) = F ) ) ) ) |
49 |
|
1n0 |
|- 1o =/= (/) |
50 |
|
necom |
|- ( 1o =/= (/) <-> (/) =/= 1o ) |
51 |
|
df-1o |
|- 1o = suc (/) |
52 |
|
uni0 |
|- U. (/) = (/) |
53 |
|
suceq |
|- ( U. (/) = (/) -> suc U. (/) = suc (/) ) |
54 |
52 53
|
ax-mp |
|- suc U. (/) = suc (/) |
55 |
51 54
|
eqtr4i |
|- 1o = suc U. (/) |
56 |
55
|
neeq2i |
|- ( (/) =/= 1o <-> (/) =/= suc U. (/) ) |
57 |
|
df-ne |
|- ( (/) =/= suc U. (/) <-> -. (/) = suc U. (/) ) |
58 |
50 56 57
|
3bitri |
|- ( 1o =/= (/) <-> -. (/) = suc U. (/) ) |
59 |
|
id |
|- ( B = (/) -> B = (/) ) |
60 |
|
unieq |
|- ( B = (/) -> U. B = U. (/) ) |
61 |
|
suceq |
|- ( U. B = U. (/) -> suc U. B = suc U. (/) ) |
62 |
60 61
|
syl |
|- ( B = (/) -> suc U. B = suc U. (/) ) |
63 |
59 62
|
eqeq12d |
|- ( B = (/) -> ( B = suc U. B <-> (/) = suc U. (/) ) ) |
64 |
63
|
notbid |
|- ( B = (/) -> ( -. B = suc U. B <-> -. (/) = suc U. (/) ) ) |
65 |
58 64
|
bitr4id |
|- ( B = (/) -> ( 1o =/= (/) <-> -. B = suc U. B ) ) |
66 |
49 65
|
mpbii |
|- ( B = (/) -> -. B = suc U. B ) |
67 |
66
|
con2i |
|- ( B = suc U. B -> -. B = (/) ) |
68 |
67
|
adantl |
|- ( ( ( A e. On /\ B e. On ) /\ B = suc U. B ) -> -. B = (/) ) |
69 |
68
|
pm2.21d |
|- ( ( ( A e. On /\ B e. On ) /\ B = suc U. B ) -> ( B = (/) -> ( A .(x) B ) = D ) ) |
70 |
|
simprl |
|- ( ( A e. On /\ ( B = suc C /\ C e. On ) ) -> B = suc C ) |
71 |
70
|
oveq2d |
|- ( ( A e. On /\ ( B = suc C /\ C e. On ) ) -> ( A .(x) B ) = ( A .(x) suc C ) ) |
72 |
2
|
adantrl |
|- ( ( A e. On /\ ( B = suc C /\ C e. On ) ) -> ( A .(x) suc C ) = E ) |
73 |
71 72
|
eqtrd |
|- ( ( A e. On /\ ( B = suc C /\ C e. On ) ) -> ( A .(x) B ) = E ) |
74 |
73
|
ex |
|- ( A e. On -> ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) ) |
75 |
74
|
ad2antrr |
|- ( ( ( A e. On /\ B e. On ) /\ B = suc U. B ) -> ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) ) |
76 |
|
onuni |
|- ( B e. On -> U. B e. On ) |
77 |
|
nlimsucg |
|- ( U. B e. On -> -. Lim suc U. B ) |
78 |
76 77
|
syl |
|- ( B e. On -> -. Lim suc U. B ) |
79 |
|
limeq |
|- ( B = suc U. B -> ( Lim B <-> Lim suc U. B ) ) |
80 |
79
|
notbid |
|- ( B = suc U. B -> ( -. Lim B <-> -. Lim suc U. B ) ) |
81 |
80
|
biimprd |
|- ( B = suc U. B -> ( -. Lim suc U. B -> -. Lim B ) ) |
82 |
78 81
|
mpan9 |
|- ( ( B e. On /\ B = suc U. B ) -> -. Lim B ) |
83 |
82
|
adantll |
|- ( ( ( A e. On /\ B e. On ) /\ B = suc U. B ) -> -. Lim B ) |
84 |
83
|
pm2.21d |
|- ( ( ( A e. On /\ B e. On ) /\ B = suc U. B ) -> ( Lim B -> ( A .(x) B ) = F ) ) |
85 |
69 75 84
|
3jca |
|- ( ( ( A e. On /\ B e. On ) /\ B = suc U. B ) -> ( ( B = (/) -> ( A .(x) B ) = D ) /\ ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) /\ ( Lim B -> ( A .(x) B ) = F ) ) ) |
86 |
85
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( B = suc U. B -> ( ( B = (/) -> ( A .(x) B ) = D ) /\ ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) /\ ( Lim B -> ( A .(x) B ) = F ) ) ) ) |
87 |
48 86
|
jaod |
|- ( ( A e. On /\ B e. On ) -> ( ( ( B = (/) \/ Lim B ) \/ B = suc U. B ) -> ( ( B = (/) -> ( A .(x) B ) = D ) /\ ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) /\ ( Lim B -> ( A .(x) B ) = F ) ) ) ) |
88 |
11 87
|
mpd |
|- ( ( A e. On /\ B e. On ) -> ( ( B = (/) -> ( A .(x) B ) = D ) /\ ( ( B = suc C /\ C e. On ) -> ( A .(x) B ) = E ) /\ ( Lim B -> ( A .(x) B ) = F ) ) ) |