Metamath Proof Explorer


Theorem obsss

Description: An orthonormal basis is a subset of the base set. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypothesis obsss.v V = Base W
Assertion obsss B OBasis W B V

Proof

Step Hyp Ref Expression
1 obsss.v V = Base W
2 eqid 𝑖 W = 𝑖 W
3 eqid Scalar W = Scalar W
4 eqid 1 Scalar W = 1 Scalar W
5 eqid 0 Scalar W = 0 Scalar W
6 eqid ocv W = ocv W
7 eqid 0 W = 0 W
8 1 2 3 4 5 6 7 isobs B OBasis W W PreHil B V x B y B x 𝑖 W y = if x = y 1 Scalar W 0 Scalar W ocv W B = 0 W
9 8 simp2bi B OBasis W B V