Metamath Proof Explorer


Theorem obsne0

Description: A basis element is nonzero. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypothesis obsocv.z 0 ˙ = 0 W
Assertion obsne0 B OBasis W A B A 0 ˙

Proof

Step Hyp Ref Expression
1 obsocv.z 0 ˙ = 0 W
2 obsrcl B OBasis W W PreHil
3 phllvec W PreHil W LVec
4 eqid Scalar W = Scalar W
5 4 lvecdrng W LVec Scalar W DivRing
6 2 3 5 3syl B OBasis W Scalar W DivRing
7 6 adantr B OBasis W A B Scalar W DivRing
8 eqid 0 Scalar W = 0 Scalar W
9 eqid 1 Scalar W = 1 Scalar W
10 8 9 drngunz Scalar W DivRing 1 Scalar W 0 Scalar W
11 7 10 syl B OBasis W A B 1 Scalar W 0 Scalar W
12 eqid 𝑖 W = 𝑖 W
13 12 4 9 obsipid B OBasis W A B A 𝑖 W A = 1 Scalar W
14 13 eqeq1d B OBasis W A B A 𝑖 W A = 0 Scalar W 1 Scalar W = 0 Scalar W
15 eqid Base W = Base W
16 15 obsss B OBasis W B Base W
17 16 sselda B OBasis W A B A Base W
18 4 12 15 8 1 ipeq0 W PreHil A Base W A 𝑖 W A = 0 Scalar W A = 0 ˙
19 2 17 18 syl2an2r B OBasis W A B A 𝑖 W A = 0 Scalar W A = 0 ˙
20 14 19 bitr3d B OBasis W A B 1 Scalar W = 0 Scalar W A = 0 ˙
21 20 necon3bid B OBasis W A B 1 Scalar W 0 Scalar W A 0 ˙
22 11 21 mpbid B OBasis W A B A 0 ˙