Metamath Proof Explorer


Theorem obsocv

Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses obsocv.z 0˙=0W
obsocv.o ˙=ocvW
Assertion obsocv BOBasisW˙B=0˙

Proof

Step Hyp Ref Expression
1 obsocv.z 0˙=0W
2 obsocv.o ˙=ocvW
3 eqid BaseW=BaseW
4 eqid 𝑖W=𝑖W
5 eqid ScalarW=ScalarW
6 eqid 1ScalarW=1ScalarW
7 eqid 0ScalarW=0ScalarW
8 3 4 5 6 7 2 1 isobs BOBasisWWPreHilBBaseWxByBx𝑖Wy=ifx=y1ScalarW0ScalarW˙B=0˙
9 8 simp3bi BOBasisWxByBx𝑖Wy=ifx=y1ScalarW0ScalarW˙B=0˙
10 9 simprd BOBasisW˙B=0˙