Metamath Proof Explorer


Theorem obsocv

Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses obsocv.z 0 ˙ = 0 W
obsocv.o ˙ = ocv W
Assertion obsocv B OBasis W ˙ B = 0 ˙

Proof

Step Hyp Ref Expression
1 obsocv.z 0 ˙ = 0 W
2 obsocv.o ˙ = ocv W
3 eqid Base W = Base W
4 eqid 𝑖 W = 𝑖 W
5 eqid Scalar W = Scalar W
6 eqid 1 Scalar W = 1 Scalar W
7 eqid 0 Scalar W = 0 Scalar W
8 3 4 5 6 7 2 1 isobs B OBasis W W PreHil B Base W x B y B x 𝑖 W y = if x = y 1 Scalar W 0 Scalar W ˙ B = 0 ˙
9 8 simp3bi B OBasis W x B y B x 𝑖 W y = if x = y 1 Scalar W 0 Scalar W ˙ B = 0 ˙
10 9 simprd B OBasis W ˙ B = 0 ˙