Metamath Proof Explorer


Theorem obsocv

Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses obsocv.z 0 = ( 0g𝑊 )
obsocv.o = ( ocv ‘ 𝑊 )
Assertion obsocv ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( 𝐵 ) = { 0 } )

Proof

Step Hyp Ref Expression
1 obsocv.z 0 = ( 0g𝑊 )
2 obsocv.o = ( ocv ‘ 𝑊 )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
5 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
6 eqid ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) )
7 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
8 3 4 5 6 7 2 1 isobs ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ↔ ( 𝑊 ∈ PreHil ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ 𝑊 ) ) , ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ) = { 0 } ) ) )
9 8 simp3bi ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ 𝑊 ) ) , ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝐵 ) = { 0 } ) )
10 9 simprd ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( 𝐵 ) = { 0 } )