| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obsocv.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 2 |  | obsocv.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 8 | 3 4 5 6 7 2 1 | isobs | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ↔  ( 𝑊  ∈  PreHil  ∧  𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  if ( 𝑥  =  𝑦 ,  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ,  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  (  ⊥  ‘ 𝐵 )  =  {  0  } ) ) ) | 
						
							| 9 | 8 | simp3bi | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  if ( 𝑥  =  𝑦 ,  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ,  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  (  ⊥  ‘ 𝐵 )  =  {  0  } ) ) | 
						
							| 10 | 9 | simprd | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  (  ⊥  ‘ 𝐵 )  =  {  0  } ) |