Step |
Hyp |
Ref |
Expression |
1 |
|
obsocv.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
obsocv.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
8 |
3 4 5 6 7 2 1
|
isobs |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ↔ ( 𝑊 ∈ PreHil ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ 𝑊 ) ) , ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ⊥ ‘ 𝐵 ) = { 0 } ) ) ) |
9 |
8
|
simp3bi |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ 𝑊 ) ) , ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ⊥ ‘ 𝐵 ) = { 0 } ) ) |
10 |
9
|
simprd |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ⊥ ‘ 𝐵 ) = { 0 } ) |