Metamath Proof Explorer


Theorem obs2ocv

Description: The double orthocomplement (closure) of an orthonormal basis is the whole space. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses obs2ocv.o = ( ocv ‘ 𝑊 )
obs2ocv.v 𝑉 = ( Base ‘ 𝑊 )
Assertion obs2ocv ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ‘ ( 𝐵 ) ) = 𝑉 )

Proof

Step Hyp Ref Expression
1 obs2ocv.o = ( ocv ‘ 𝑊 )
2 obs2ocv.v 𝑉 = ( Base ‘ 𝑊 )
3 eqid ( 0g𝑊 ) = ( 0g𝑊 )
4 3 1 obsocv ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( 𝐵 ) = { ( 0g𝑊 ) } )
5 4 fveq2d ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ‘ ( 𝐵 ) ) = ( ‘ { ( 0g𝑊 ) } ) )
6 obsrcl ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝑊 ∈ PreHil )
7 2 1 3 ocvz ( 𝑊 ∈ PreHil → ( ‘ { ( 0g𝑊 ) } ) = 𝑉 )
8 6 7 syl ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ‘ { ( 0g𝑊 ) } ) = 𝑉 )
9 5 8 eqtrd ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ‘ ( 𝐵 ) ) = 𝑉 )