Step |
Hyp |
Ref |
Expression |
1 |
|
obs2ocv.o |
|- ._|_ = ( ocv ` W ) |
2 |
|
obs2ocv.v |
|- V = ( Base ` W ) |
3 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
4 |
3 1
|
obsocv |
|- ( B e. ( OBasis ` W ) -> ( ._|_ ` B ) = { ( 0g ` W ) } ) |
5 |
4
|
fveq2d |
|- ( B e. ( OBasis ` W ) -> ( ._|_ ` ( ._|_ ` B ) ) = ( ._|_ ` { ( 0g ` W ) } ) ) |
6 |
|
obsrcl |
|- ( B e. ( OBasis ` W ) -> W e. PreHil ) |
7 |
2 1 3
|
ocvz |
|- ( W e. PreHil -> ( ._|_ ` { ( 0g ` W ) } ) = V ) |
8 |
6 7
|
syl |
|- ( B e. ( OBasis ` W ) -> ( ._|_ ` { ( 0g ` W ) } ) = V ) |
9 |
5 8
|
eqtrd |
|- ( B e. ( OBasis ` W ) -> ( ._|_ ` ( ._|_ ` B ) ) = V ) |