Metamath Proof Explorer


Theorem obs2ocv

Description: The double orthocomplement (closure) of an orthonormal basis is the whole space. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses obs2ocv.o
|- ._|_ = ( ocv ` W )
obs2ocv.v
|- V = ( Base ` W )
Assertion obs2ocv
|- ( B e. ( OBasis ` W ) -> ( ._|_ ` ( ._|_ ` B ) ) = V )

Proof

Step Hyp Ref Expression
1 obs2ocv.o
 |-  ._|_ = ( ocv ` W )
2 obs2ocv.v
 |-  V = ( Base ` W )
3 eqid
 |-  ( 0g ` W ) = ( 0g ` W )
4 3 1 obsocv
 |-  ( B e. ( OBasis ` W ) -> ( ._|_ ` B ) = { ( 0g ` W ) } )
5 4 fveq2d
 |-  ( B e. ( OBasis ` W ) -> ( ._|_ ` ( ._|_ ` B ) ) = ( ._|_ ` { ( 0g ` W ) } ) )
6 obsrcl
 |-  ( B e. ( OBasis ` W ) -> W e. PreHil )
7 2 1 3 ocvz
 |-  ( W e. PreHil -> ( ._|_ ` { ( 0g ` W ) } ) = V )
8 6 7 syl
 |-  ( B e. ( OBasis ` W ) -> ( ._|_ ` { ( 0g ` W ) } ) = V )
9 5 8 eqtrd
 |-  ( B e. ( OBasis ` W ) -> ( ._|_ ` ( ._|_ ` B ) ) = V )