Step |
Hyp |
Ref |
Expression |
1 |
|
obsocv.z |
|- .0. = ( 0g ` W ) |
2 |
|
obsocv.o |
|- ._|_ = ( ocv ` W ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
6 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
7 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
8 |
3 4 5 6 7 2 1
|
isobs |
|- ( B e. ( OBasis ` W ) <-> ( W e. PreHil /\ B C_ ( Base ` W ) /\ ( A. x e. B A. y e. B ( x ( .i ` W ) y ) = if ( x = y , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) /\ ( ._|_ ` B ) = { .0. } ) ) ) |
9 |
8
|
simp3bi |
|- ( B e. ( OBasis ` W ) -> ( A. x e. B A. y e. B ( x ( .i ` W ) y ) = if ( x = y , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) /\ ( ._|_ ` B ) = { .0. } ) ) |
10 |
9
|
simprd |
|- ( B e. ( OBasis ` W ) -> ( ._|_ ` B ) = { .0. } ) |