| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obsocv.z |  |-  .0. = ( 0g ` W ) | 
						
							| 2 |  | obsocv.o |  |-  ._|_ = ( ocv ` W ) | 
						
							| 3 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 4 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 5 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 6 |  | eqid |  |-  ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 8 | 3 4 5 6 7 2 1 | isobs |  |-  ( B e. ( OBasis ` W ) <-> ( W e. PreHil /\ B C_ ( Base ` W ) /\ ( A. x e. B A. y e. B ( x ( .i ` W ) y ) = if ( x = y , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) /\ ( ._|_ ` B ) = { .0. } ) ) ) | 
						
							| 9 | 8 | simp3bi |  |-  ( B e. ( OBasis ` W ) -> ( A. x e. B A. y e. B ( x ( .i ` W ) y ) = if ( x = y , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) /\ ( ._|_ ` B ) = { .0. } ) ) | 
						
							| 10 | 9 | simprd |  |-  ( B e. ( OBasis ` W ) -> ( ._|_ ` B ) = { .0. } ) |