| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obselocv.o |  |-  ._|_ = ( ocv ` W ) | 
						
							| 2 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 3 | 2 | obsne0 |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A =/= ( 0g ` W ) ) | 
						
							| 4 | 3 | 3adant2 |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> A =/= ( 0g ` W ) ) | 
						
							| 5 |  | elin |  |-  ( A e. ( C i^i ( ._|_ ` C ) ) <-> ( A e. C /\ A e. ( ._|_ ` C ) ) ) | 
						
							| 6 |  | obsrcl |  |-  ( B e. ( OBasis ` W ) -> W e. PreHil ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> W e. PreHil ) | 
						
							| 8 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> W e. LMod ) | 
						
							| 10 |  | simp2 |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> C C_ B ) | 
						
							| 11 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 12 | 11 | obsss |  |-  ( B e. ( OBasis ` W ) -> B C_ ( Base ` W ) ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> B C_ ( Base ` W ) ) | 
						
							| 14 | 10 13 | sstrd |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> C C_ ( Base ` W ) ) | 
						
							| 15 |  | eqid |  |-  ( LSpan ` W ) = ( LSpan ` W ) | 
						
							| 16 | 11 15 | lspssid |  |-  ( ( W e. LMod /\ C C_ ( Base ` W ) ) -> C C_ ( ( LSpan ` W ) ` C ) ) | 
						
							| 17 | 9 14 16 | syl2anc |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> C C_ ( ( LSpan ` W ) ` C ) ) | 
						
							| 18 | 17 | ssrind |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( C i^i ( ._|_ ` C ) ) C_ ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` C ) ) ) | 
						
							| 19 | 11 1 15 | ocvlsp |  |-  ( ( W e. PreHil /\ C C_ ( Base ` W ) ) -> ( ._|_ ` ( ( LSpan ` W ) ` C ) ) = ( ._|_ ` C ) ) | 
						
							| 20 | 7 14 19 | syl2anc |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ._|_ ` ( ( LSpan ` W ) ` C ) ) = ( ._|_ ` C ) ) | 
						
							| 21 | 20 | ineq2d |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` ( ( LSpan ` W ) ` C ) ) ) = ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` C ) ) ) | 
						
							| 22 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 23 | 11 22 15 | lspcl |  |-  ( ( W e. LMod /\ C C_ ( Base ` W ) ) -> ( ( LSpan ` W ) ` C ) e. ( LSubSp ` W ) ) | 
						
							| 24 | 9 14 23 | syl2anc |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( LSpan ` W ) ` C ) e. ( LSubSp ` W ) ) | 
						
							| 25 | 1 22 2 | ocvin |  |-  ( ( W e. PreHil /\ ( ( LSpan ` W ) ` C ) e. ( LSubSp ` W ) ) -> ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` ( ( LSpan ` W ) ` C ) ) ) = { ( 0g ` W ) } ) | 
						
							| 26 | 7 24 25 | syl2anc |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` ( ( LSpan ` W ) ` C ) ) ) = { ( 0g ` W ) } ) | 
						
							| 27 | 21 26 | eqtr3d |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` C ) ) = { ( 0g ` W ) } ) | 
						
							| 28 | 18 27 | sseqtrd |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( C i^i ( ._|_ ` C ) ) C_ { ( 0g ` W ) } ) | 
						
							| 29 | 28 | sseld |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. ( C i^i ( ._|_ ` C ) ) -> A e. { ( 0g ` W ) } ) ) | 
						
							| 30 | 5 29 | biimtrrid |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( A e. C /\ A e. ( ._|_ ` C ) ) -> A e. { ( 0g ` W ) } ) ) | 
						
							| 31 |  | elsni |  |-  ( A e. { ( 0g ` W ) } -> A = ( 0g ` W ) ) | 
						
							| 32 | 30 31 | syl6 |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( A e. C /\ A e. ( ._|_ ` C ) ) -> A = ( 0g ` W ) ) ) | 
						
							| 33 | 32 | necon3ad |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A =/= ( 0g ` W ) -> -. ( A e. C /\ A e. ( ._|_ ` C ) ) ) ) | 
						
							| 34 | 4 33 | mpd |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> -. ( A e. C /\ A e. ( ._|_ ` C ) ) ) | 
						
							| 35 |  | imnan |  |-  ( ( A e. C -> -. A e. ( ._|_ ` C ) ) <-> -. ( A e. C /\ A e. ( ._|_ ` C ) ) ) | 
						
							| 36 | 34 35 | sylibr |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. C -> -. A e. ( ._|_ ` C ) ) ) | 
						
							| 37 | 36 | con2d |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. ( ._|_ ` C ) -> -. A e. C ) ) | 
						
							| 38 |  | simpr |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> x e. C ) | 
						
							| 39 |  | eleq1 |  |-  ( A = x -> ( A e. C <-> x e. C ) ) | 
						
							| 40 | 38 39 | syl5ibrcom |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( A = x -> A e. C ) ) | 
						
							| 41 | 40 | con3d |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( -. A e. C -> -. A = x ) ) | 
						
							| 42 |  | simpl1 |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> B e. ( OBasis ` W ) ) | 
						
							| 43 |  | simpl3 |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> A e. B ) | 
						
							| 44 | 10 | sselda |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> x e. B ) | 
						
							| 45 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 46 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 47 |  | eqid |  |-  ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) | 
						
							| 48 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 49 | 11 45 46 47 48 | obsip |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B /\ x e. B ) -> ( A ( .i ` W ) x ) = if ( A = x , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 50 | 42 43 44 49 | syl3anc |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( A ( .i ` W ) x ) = if ( A = x , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 51 |  | iffalse |  |-  ( -. A = x -> if ( A = x , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 52 | 51 | eqeq2d |  |-  ( -. A = x -> ( ( A ( .i ` W ) x ) = if ( A = x , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) <-> ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 53 | 50 52 | syl5ibcom |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( -. A = x -> ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 54 | 41 53 | syld |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( -. A e. C -> ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 55 | 54 | ralrimdva |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( -. A e. C -> A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 56 |  | simp3 |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> A e. B ) | 
						
							| 57 | 13 56 | sseldd |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> A e. ( Base ` W ) ) | 
						
							| 58 | 11 45 46 48 1 | elocv |  |-  ( A e. ( ._|_ ` C ) <-> ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) /\ A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 59 |  | df-3an |  |-  ( ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) /\ A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) <-> ( ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) ) /\ A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 60 | 58 59 | bitri |  |-  ( A e. ( ._|_ ` C ) <-> ( ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) ) /\ A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 61 | 60 | baib |  |-  ( ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) ) -> ( A e. ( ._|_ ` C ) <-> A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 62 | 14 57 61 | syl2anc |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. ( ._|_ ` C ) <-> A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 63 | 55 62 | sylibrd |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( -. A e. C -> A e. ( ._|_ ` C ) ) ) | 
						
							| 64 | 37 63 | impbid |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. ( ._|_ ` C ) <-> -. A e. C ) ) |