Step |
Hyp |
Ref |
Expression |
1 |
|
obselocv.o |
|- ._|_ = ( ocv ` W ) |
2 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
3 |
2
|
obsne0 |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A =/= ( 0g ` W ) ) |
4 |
3
|
3adant2 |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> A =/= ( 0g ` W ) ) |
5 |
|
elin |
|- ( A e. ( C i^i ( ._|_ ` C ) ) <-> ( A e. C /\ A e. ( ._|_ ` C ) ) ) |
6 |
|
obsrcl |
|- ( B e. ( OBasis ` W ) -> W e. PreHil ) |
7 |
6
|
3ad2ant1 |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> W e. PreHil ) |
8 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
9 |
7 8
|
syl |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> W e. LMod ) |
10 |
|
simp2 |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> C C_ B ) |
11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
12 |
11
|
obsss |
|- ( B e. ( OBasis ` W ) -> B C_ ( Base ` W ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> B C_ ( Base ` W ) ) |
14 |
10 13
|
sstrd |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> C C_ ( Base ` W ) ) |
15 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
16 |
11 15
|
lspssid |
|- ( ( W e. LMod /\ C C_ ( Base ` W ) ) -> C C_ ( ( LSpan ` W ) ` C ) ) |
17 |
9 14 16
|
syl2anc |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> C C_ ( ( LSpan ` W ) ` C ) ) |
18 |
17
|
ssrind |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( C i^i ( ._|_ ` C ) ) C_ ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` C ) ) ) |
19 |
11 1 15
|
ocvlsp |
|- ( ( W e. PreHil /\ C C_ ( Base ` W ) ) -> ( ._|_ ` ( ( LSpan ` W ) ` C ) ) = ( ._|_ ` C ) ) |
20 |
7 14 19
|
syl2anc |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ._|_ ` ( ( LSpan ` W ) ` C ) ) = ( ._|_ ` C ) ) |
21 |
20
|
ineq2d |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` ( ( LSpan ` W ) ` C ) ) ) = ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` C ) ) ) |
22 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
23 |
11 22 15
|
lspcl |
|- ( ( W e. LMod /\ C C_ ( Base ` W ) ) -> ( ( LSpan ` W ) ` C ) e. ( LSubSp ` W ) ) |
24 |
9 14 23
|
syl2anc |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( LSpan ` W ) ` C ) e. ( LSubSp ` W ) ) |
25 |
1 22 2
|
ocvin |
|- ( ( W e. PreHil /\ ( ( LSpan ` W ) ` C ) e. ( LSubSp ` W ) ) -> ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` ( ( LSpan ` W ) ` C ) ) ) = { ( 0g ` W ) } ) |
26 |
7 24 25
|
syl2anc |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` ( ( LSpan ` W ) ` C ) ) ) = { ( 0g ` W ) } ) |
27 |
21 26
|
eqtr3d |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( ( LSpan ` W ) ` C ) i^i ( ._|_ ` C ) ) = { ( 0g ` W ) } ) |
28 |
18 27
|
sseqtrd |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( C i^i ( ._|_ ` C ) ) C_ { ( 0g ` W ) } ) |
29 |
28
|
sseld |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. ( C i^i ( ._|_ ` C ) ) -> A e. { ( 0g ` W ) } ) ) |
30 |
5 29
|
syl5bir |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( A e. C /\ A e. ( ._|_ ` C ) ) -> A e. { ( 0g ` W ) } ) ) |
31 |
|
elsni |
|- ( A e. { ( 0g ` W ) } -> A = ( 0g ` W ) ) |
32 |
30 31
|
syl6 |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( ( A e. C /\ A e. ( ._|_ ` C ) ) -> A = ( 0g ` W ) ) ) |
33 |
32
|
necon3ad |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A =/= ( 0g ` W ) -> -. ( A e. C /\ A e. ( ._|_ ` C ) ) ) ) |
34 |
4 33
|
mpd |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> -. ( A e. C /\ A e. ( ._|_ ` C ) ) ) |
35 |
|
imnan |
|- ( ( A e. C -> -. A e. ( ._|_ ` C ) ) <-> -. ( A e. C /\ A e. ( ._|_ ` C ) ) ) |
36 |
34 35
|
sylibr |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. C -> -. A e. ( ._|_ ` C ) ) ) |
37 |
36
|
con2d |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. ( ._|_ ` C ) -> -. A e. C ) ) |
38 |
|
simpr |
|- ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> x e. C ) |
39 |
|
eleq1 |
|- ( A = x -> ( A e. C <-> x e. C ) ) |
40 |
38 39
|
syl5ibrcom |
|- ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( A = x -> A e. C ) ) |
41 |
40
|
con3d |
|- ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( -. A e. C -> -. A = x ) ) |
42 |
|
simpl1 |
|- ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> B e. ( OBasis ` W ) ) |
43 |
|
simpl3 |
|- ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> A e. B ) |
44 |
10
|
sselda |
|- ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> x e. B ) |
45 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
46 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
47 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
48 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
49 |
11 45 46 47 48
|
obsip |
|- ( ( B e. ( OBasis ` W ) /\ A e. B /\ x e. B ) -> ( A ( .i ` W ) x ) = if ( A = x , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) ) |
50 |
42 43 44 49
|
syl3anc |
|- ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( A ( .i ` W ) x ) = if ( A = x , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) ) |
51 |
|
iffalse |
|- ( -. A = x -> if ( A = x , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` ( Scalar ` W ) ) ) |
52 |
51
|
eqeq2d |
|- ( -. A = x -> ( ( A ( .i ` W ) x ) = if ( A = x , ( 1r ` ( Scalar ` W ) ) , ( 0g ` ( Scalar ` W ) ) ) <-> ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) |
53 |
50 52
|
syl5ibcom |
|- ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( -. A = x -> ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) |
54 |
41 53
|
syld |
|- ( ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) /\ x e. C ) -> ( -. A e. C -> ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) |
55 |
54
|
ralrimdva |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( -. A e. C -> A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) |
56 |
|
simp3 |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> A e. B ) |
57 |
13 56
|
sseldd |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> A e. ( Base ` W ) ) |
58 |
11 45 46 48 1
|
elocv |
|- ( A e. ( ._|_ ` C ) <-> ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) /\ A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) |
59 |
|
df-3an |
|- ( ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) /\ A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) <-> ( ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) ) /\ A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) |
60 |
58 59
|
bitri |
|- ( A e. ( ._|_ ` C ) <-> ( ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) ) /\ A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) |
61 |
60
|
baib |
|- ( ( C C_ ( Base ` W ) /\ A e. ( Base ` W ) ) -> ( A e. ( ._|_ ` C ) <-> A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) |
62 |
14 57 61
|
syl2anc |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. ( ._|_ ` C ) <-> A. x e. C ( A ( .i ` W ) x ) = ( 0g ` ( Scalar ` W ) ) ) ) |
63 |
55 62
|
sylibrd |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( -. A e. C -> A e. ( ._|_ ` C ) ) ) |
64 |
37 63
|
impbid |
|- ( ( B e. ( OBasis ` W ) /\ C C_ B /\ A e. B ) -> ( A e. ( ._|_ ` C ) <-> -. A e. C ) ) |