| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obsocv.z |  |-  .0. = ( 0g ` W ) | 
						
							| 2 |  | obsrcl |  |-  ( B e. ( OBasis ` W ) -> W e. PreHil ) | 
						
							| 3 |  | phllvec |  |-  ( W e. PreHil -> W e. LVec ) | 
						
							| 4 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 5 | 4 | lvecdrng |  |-  ( W e. LVec -> ( Scalar ` W ) e. DivRing ) | 
						
							| 6 | 2 3 5 | 3syl |  |-  ( B e. ( OBasis ` W ) -> ( Scalar ` W ) e. DivRing ) | 
						
							| 7 | 6 | adantr |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( Scalar ` W ) e. DivRing ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 9 |  | eqid |  |-  ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) | 
						
							| 10 | 8 9 | drngunz |  |-  ( ( Scalar ` W ) e. DivRing -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) | 
						
							| 12 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 13 | 12 4 9 | obsipid |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ( .i ` W ) A ) = ( 1r ` ( Scalar ` W ) ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> ( 1r ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 16 | 15 | obsss |  |-  ( B e. ( OBasis ` W ) -> B C_ ( Base ` W ) ) | 
						
							| 17 | 16 | sselda |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A e. ( Base ` W ) ) | 
						
							| 18 | 4 12 15 8 1 | ipeq0 |  |-  ( ( W e. PreHil /\ A e. ( Base ` W ) ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) | 
						
							| 19 | 2 17 18 | syl2an2r |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) | 
						
							| 20 | 14 19 | bitr3d |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( 1r ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) | 
						
							| 21 | 20 | necon3bid |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) <-> A =/= .0. ) ) | 
						
							| 22 | 11 21 | mpbid |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A =/= .0. ) |