Metamath Proof Explorer


Theorem obsne0

Description: A basis element is nonzero. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypothesis obsocv.z
|- .0. = ( 0g ` W )
Assertion obsne0
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A =/= .0. )

Proof

Step Hyp Ref Expression
1 obsocv.z
 |-  .0. = ( 0g ` W )
2 obsrcl
 |-  ( B e. ( OBasis ` W ) -> W e. PreHil )
3 phllvec
 |-  ( W e. PreHil -> W e. LVec )
4 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
5 4 lvecdrng
 |-  ( W e. LVec -> ( Scalar ` W ) e. DivRing )
6 2 3 5 3syl
 |-  ( B e. ( OBasis ` W ) -> ( Scalar ` W ) e. DivRing )
7 6 adantr
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( Scalar ` W ) e. DivRing )
8 eqid
 |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) )
9 eqid
 |-  ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) )
10 8 9 drngunz
 |-  ( ( Scalar ` W ) e. DivRing -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) )
11 7 10 syl
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) )
12 eqid
 |-  ( .i ` W ) = ( .i ` W )
13 12 4 9 obsipid
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ( .i ` W ) A ) = ( 1r ` ( Scalar ` W ) ) )
14 13 eqeq1d
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> ( 1r ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) ) )
15 eqid
 |-  ( Base ` W ) = ( Base ` W )
16 15 obsss
 |-  ( B e. ( OBasis ` W ) -> B C_ ( Base ` W ) )
17 16 sselda
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A e. ( Base ` W ) )
18 4 12 15 8 1 ipeq0
 |-  ( ( W e. PreHil /\ A e. ( Base ` W ) ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) )
19 2 17 18 syl2an2r
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) )
20 14 19 bitr3d
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( 1r ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) )
21 20 necon3bid
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) <-> A =/= .0. ) )
22 11 21 mpbid
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A =/= .0. )