| Step |
Hyp |
Ref |
Expression |
| 1 |
|
obsocv.z |
|- .0. = ( 0g ` W ) |
| 2 |
|
obsrcl |
|- ( B e. ( OBasis ` W ) -> W e. PreHil ) |
| 3 |
|
phllvec |
|- ( W e. PreHil -> W e. LVec ) |
| 4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 5 |
4
|
lvecdrng |
|- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 6 |
2 3 5
|
3syl |
|- ( B e. ( OBasis ` W ) -> ( Scalar ` W ) e. DivRing ) |
| 7 |
6
|
adantr |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( Scalar ` W ) e. DivRing ) |
| 8 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 9 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
| 10 |
8 9
|
drngunz |
|- ( ( Scalar ` W ) e. DivRing -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 11 |
7 10
|
syl |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 12 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
| 13 |
12 4 9
|
obsipid |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ( .i ` W ) A ) = ( 1r ` ( Scalar ` W ) ) ) |
| 14 |
13
|
eqeq1d |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> ( 1r ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) ) ) |
| 15 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 16 |
15
|
obsss |
|- ( B e. ( OBasis ` W ) -> B C_ ( Base ` W ) ) |
| 17 |
16
|
sselda |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A e. ( Base ` W ) ) |
| 18 |
4 12 15 8 1
|
ipeq0 |
|- ( ( W e. PreHil /\ A e. ( Base ` W ) ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) |
| 19 |
2 17 18
|
syl2an2r |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) |
| 20 |
14 19
|
bitr3d |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( 1r ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) |
| 21 |
20
|
necon3bid |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) <-> A =/= .0. ) ) |
| 22 |
11 21
|
mpbid |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A =/= .0. ) |