Step |
Hyp |
Ref |
Expression |
1 |
|
obsocv.z |
|- .0. = ( 0g ` W ) |
2 |
|
obsrcl |
|- ( B e. ( OBasis ` W ) -> W e. PreHil ) |
3 |
|
phllvec |
|- ( W e. PreHil -> W e. LVec ) |
4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
5 |
4
|
lvecdrng |
|- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
6 |
2 3 5
|
3syl |
|- ( B e. ( OBasis ` W ) -> ( Scalar ` W ) e. DivRing ) |
7 |
6
|
adantr |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( Scalar ` W ) e. DivRing ) |
8 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
9 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
10 |
8 9
|
drngunz |
|- ( ( Scalar ` W ) e. DivRing -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
11 |
7 10
|
syl |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) ) |
12 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
13 |
12 4 9
|
obsipid |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ( .i ` W ) A ) = ( 1r ` ( Scalar ` W ) ) ) |
14 |
13
|
eqeq1d |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> ( 1r ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) ) ) |
15 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
16 |
15
|
obsss |
|- ( B e. ( OBasis ` W ) -> B C_ ( Base ` W ) ) |
17 |
16
|
sselda |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A e. ( Base ` W ) ) |
18 |
4 12 15 8 1
|
ipeq0 |
|- ( ( W e. PreHil /\ A e. ( Base ` W ) ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) |
19 |
2 17 18
|
syl2an2r |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( A ( .i ` W ) A ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) |
20 |
14 19
|
bitr3d |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( 1r ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) <-> A = .0. ) ) |
21 |
20
|
necon3bid |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( ( 1r ` ( Scalar ` W ) ) =/= ( 0g ` ( Scalar ` W ) ) <-> A =/= .0. ) ) |
22 |
11 21
|
mpbid |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> A =/= .0. ) |