| Step |
Hyp |
Ref |
Expression |
| 1 |
|
obsocv.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
obsrcl |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝑊 ∈ PreHil ) |
| 3 |
|
phllvec |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) |
| 4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 5 |
4
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 6 |
2 3 5
|
3syl |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 8 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
| 10 |
8 9
|
drngunz |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ DivRing → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 |
7 10
|
syl |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 12 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 13 |
12 4 9
|
obsipid |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝐴 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 16 |
15
|
obsss |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝐵 ⊆ ( Base ‘ 𝑊 ) ) |
| 17 |
16
|
sselda |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
| 18 |
4 12 15 8 1
|
ipeq0 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) ) |
| 19 |
2 17 18
|
syl2an2r |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) ) |
| 20 |
14 19
|
bitr3d |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) ) |
| 21 |
20
|
necon3bid |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 ≠ 0 ) ) |
| 22 |
11 21
|
mpbid |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ≠ 0 ) |