| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obsocv.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 2 |  | obsrcl | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  𝑊  ∈  PreHil ) | 
						
							| 3 |  | phllvec | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LVec ) | 
						
							| 4 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 | 4 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  ( Scalar ‘ 𝑊 )  ∈  DivRing ) | 
						
							| 6 | 2 3 5 | 3syl | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( Scalar ‘ 𝑊 )  ∈  DivRing ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  ( Scalar ‘ 𝑊 )  ∈  DivRing ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 9 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 10 | 8 9 | drngunz | ⊢ ( ( Scalar ‘ 𝑊 )  ∈  DivRing  →  ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 11 | 7 10 | syl | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 13 | 12 4 9 | obsipid | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝐴 )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝐴 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 16 | 15 | obsss | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  𝐵  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 17 | 16 | sselda | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 18 | 4 12 15 8 1 | ipeq0 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝐴 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝐴  =   0  ) ) | 
						
							| 19 | 2 17 18 | syl2an2r | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝐴 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝐴  =   0  ) ) | 
						
							| 20 | 14 19 | bitr3d | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝐴  =   0  ) ) | 
						
							| 21 | 20 | necon3bid | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝐴  ≠   0  ) ) | 
						
							| 22 | 11 21 | mpbid | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  𝐴  ≠   0  ) |