Metamath Proof Explorer


Theorem obsne0

Description: A basis element is nonzero. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypothesis obsocv.z 0 = ( 0g𝑊 )
Assertion obsne0 ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → 𝐴0 )

Proof

Step Hyp Ref Expression
1 obsocv.z 0 = ( 0g𝑊 )
2 obsrcl ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝑊 ∈ PreHil )
3 phllvec ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec )
4 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
5 4 lvecdrng ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing )
6 2 3 5 3syl ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( Scalar ‘ 𝑊 ) ∈ DivRing )
7 6 adantr ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( Scalar ‘ 𝑊 ) ∈ DivRing )
8 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
9 eqid ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) )
10 8 9 drngunz ( ( Scalar ‘ 𝑊 ) ∈ DivRing → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
11 7 10 syl ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
12 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
13 12 4 9 obsipid ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( 𝐴 ( ·𝑖𝑊 ) 𝐴 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )
14 13 eqeq1d ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( ( 𝐴 ( ·𝑖𝑊 ) 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
15 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
16 15 obsss ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝐵 ⊆ ( Base ‘ 𝑊 ) )
17 16 sselda ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → 𝐴 ∈ ( Base ‘ 𝑊 ) )
18 4 12 15 8 1 ipeq0 ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ( ·𝑖𝑊 ) 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) )
19 2 17 18 syl2an2r ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( ( 𝐴 ( ·𝑖𝑊 ) 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) )
20 14 19 bitr3d ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴 = 0 ) )
21 20 necon3bid ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝐴0 ) )
22 11 21 mpbid ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → 𝐴0 )