| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 |  |-  ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) -> C C_ B ) | 
						
							| 2 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 3 | 2 | obsne0 |  |-  ( ( B e. ( OBasis ` W ) /\ x e. B ) -> x =/= ( 0g ` W ) ) | 
						
							| 4 | 3 | 3ad2antl1 |  |-  ( ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> x =/= ( 0g ` W ) ) | 
						
							| 5 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 6 | 5 | obselocv |  |-  ( ( B e. ( OBasis ` W ) /\ C C_ B /\ x e. B ) -> ( x e. ( ( ocv ` W ) ` C ) <-> -. x e. C ) ) | 
						
							| 7 | 6 | 3expa |  |-  ( ( ( B e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> ( x e. ( ( ocv ` W ) ` C ) <-> -. x e. C ) ) | 
						
							| 8 | 7 | 3adantl2 |  |-  ( ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> ( x e. ( ( ocv ` W ) ` C ) <-> -. x e. C ) ) | 
						
							| 9 |  | simpl2 |  |-  ( ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> C e. ( OBasis ` W ) ) | 
						
							| 10 | 2 5 | obsocv |  |-  ( C e. ( OBasis ` W ) -> ( ( ocv ` W ) ` C ) = { ( 0g ` W ) } ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> ( ( ocv ` W ) ` C ) = { ( 0g ` W ) } ) | 
						
							| 12 | 11 | eleq2d |  |-  ( ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> ( x e. ( ( ocv ` W ) ` C ) <-> x e. { ( 0g ` W ) } ) ) | 
						
							| 13 |  | elsni |  |-  ( x e. { ( 0g ` W ) } -> x = ( 0g ` W ) ) | 
						
							| 14 | 12 13 | biimtrdi |  |-  ( ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> ( x e. ( ( ocv ` W ) ` C ) -> x = ( 0g ` W ) ) ) | 
						
							| 15 | 8 14 | sylbird |  |-  ( ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> ( -. x e. C -> x = ( 0g ` W ) ) ) | 
						
							| 16 | 15 | necon1ad |  |-  ( ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> ( x =/= ( 0g ` W ) -> x e. C ) ) | 
						
							| 17 | 4 16 | mpd |  |-  ( ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) /\ x e. B ) -> x e. C ) | 
						
							| 18 | 1 17 | eqelssd |  |-  ( ( B e. ( OBasis ` W ) /\ C e. ( OBasis ` W ) /\ C C_ B ) -> C = B ) |