Step |
Hyp |
Ref |
Expression |
1 |
|
obslbs.j |
|- J = ( LBasis ` W ) |
2 |
|
obslbs.n |
|- N = ( LSpan ` W ) |
3 |
|
obslbs.c |
|- C = ( ClSubSp ` W ) |
4 |
|
obsrcl |
|- ( B e. ( OBasis ` W ) -> W e. PreHil ) |
5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
6 |
5
|
obsss |
|- ( B e. ( OBasis ` W ) -> B C_ ( Base ` W ) ) |
7 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
8 |
5 7 2
|
ocvlsp |
|- ( ( W e. PreHil /\ B C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( N ` B ) ) = ( ( ocv ` W ) ` B ) ) |
9 |
4 6 8
|
syl2anc |
|- ( B e. ( OBasis ` W ) -> ( ( ocv ` W ) ` ( N ` B ) ) = ( ( ocv ` W ) ` B ) ) |
10 |
9
|
fveq2d |
|- ( B e. ( OBasis ` W ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) = ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) ) |
11 |
7 5
|
obs2ocv |
|- ( B e. ( OBasis ` W ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) = ( Base ` W ) ) |
12 |
10 11
|
eqtrd |
|- ( B e. ( OBasis ` W ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) = ( Base ` W ) ) |
13 |
12
|
eqeq2d |
|- ( B e. ( OBasis ` W ) -> ( ( N ` B ) = ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) <-> ( N ` B ) = ( Base ` W ) ) ) |
14 |
7 3
|
iscss |
|- ( W e. PreHil -> ( ( N ` B ) e. C <-> ( N ` B ) = ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) ) ) |
15 |
4 14
|
syl |
|- ( B e. ( OBasis ` W ) -> ( ( N ` B ) e. C <-> ( N ` B ) = ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) ) ) |
16 |
|
phllvec |
|- ( W e. PreHil -> W e. LVec ) |
17 |
4 16
|
syl |
|- ( B e. ( OBasis ` W ) -> W e. LVec ) |
18 |
|
pssnel |
|- ( x C. B -> E. y ( y e. B /\ -. y e. x ) ) |
19 |
18
|
adantl |
|- ( ( B e. ( OBasis ` W ) /\ x C. B ) -> E. y ( y e. B /\ -. y e. x ) ) |
20 |
|
simpll |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> B e. ( OBasis ` W ) ) |
21 |
|
pssss |
|- ( x C. B -> x C_ B ) |
22 |
21
|
ad2antlr |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> x C_ B ) |
23 |
|
simpr |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> y e. B ) |
24 |
7
|
obselocv |
|- ( ( B e. ( OBasis ` W ) /\ x C_ B /\ y e. B ) -> ( y e. ( ( ocv ` W ) ` x ) <-> -. y e. x ) ) |
25 |
20 22 23 24
|
syl3anc |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( y e. ( ( ocv ` W ) ` x ) <-> -. y e. x ) ) |
26 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
27 |
26
|
obsne0 |
|- ( ( B e. ( OBasis ` W ) /\ y e. B ) -> y =/= ( 0g ` W ) ) |
28 |
20 23 27
|
syl2anc |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> y =/= ( 0g ` W ) ) |
29 |
|
nelsn |
|- ( y =/= ( 0g ` W ) -> -. y e. { ( 0g ` W ) } ) |
30 |
28 29
|
syl |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> -. y e. { ( 0g ` W ) } ) |
31 |
|
nelne1 |
|- ( ( y e. ( ( ocv ` W ) ` x ) /\ -. y e. { ( 0g ` W ) } ) -> ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } ) |
32 |
31
|
expcom |
|- ( -. y e. { ( 0g ` W ) } -> ( y e. ( ( ocv ` W ) ` x ) -> ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } ) ) |
33 |
30 32
|
syl |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( y e. ( ( ocv ` W ) ` x ) -> ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } ) ) |
34 |
25 33
|
sylbird |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( -. y e. x -> ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } ) ) |
35 |
|
npss |
|- ( -. ( N ` x ) C. ( Base ` W ) <-> ( ( N ` x ) C_ ( Base ` W ) -> ( N ` x ) = ( Base ` W ) ) ) |
36 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
37 |
4 36
|
syl |
|- ( B e. ( OBasis ` W ) -> W e. LMod ) |
38 |
37
|
ad2antrr |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> W e. LMod ) |
39 |
6
|
ad2antrr |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> B C_ ( Base ` W ) ) |
40 |
22 39
|
sstrd |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> x C_ ( Base ` W ) ) |
41 |
5 2
|
lspssv |
|- ( ( W e. LMod /\ x C_ ( Base ` W ) ) -> ( N ` x ) C_ ( Base ` W ) ) |
42 |
38 40 41
|
syl2anc |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( N ` x ) C_ ( Base ` W ) ) |
43 |
|
fveq2 |
|- ( ( N ` x ) = ( Base ` W ) -> ( ( ocv ` W ) ` ( N ` x ) ) = ( ( ocv ` W ) ` ( Base ` W ) ) ) |
44 |
4
|
ad2antrr |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> W e. PreHil ) |
45 |
5 7 2
|
ocvlsp |
|- ( ( W e. PreHil /\ x C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( N ` x ) ) = ( ( ocv ` W ) ` x ) ) |
46 |
44 40 45
|
syl2anc |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ocv ` W ) ` ( N ` x ) ) = ( ( ocv ` W ) ` x ) ) |
47 |
5 7 26
|
ocv1 |
|- ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) = { ( 0g ` W ) } ) |
48 |
44 47
|
syl |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ocv ` W ) ` ( Base ` W ) ) = { ( 0g ` W ) } ) |
49 |
46 48
|
eqeq12d |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ( ocv ` W ) ` ( N ` x ) ) = ( ( ocv ` W ) ` ( Base ` W ) ) <-> ( ( ocv ` W ) ` x ) = { ( 0g ` W ) } ) ) |
50 |
43 49
|
syl5ib |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( N ` x ) = ( Base ` W ) -> ( ( ocv ` W ) ` x ) = { ( 0g ` W ) } ) ) |
51 |
42 50
|
embantd |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ( N ` x ) C_ ( Base ` W ) -> ( N ` x ) = ( Base ` W ) ) -> ( ( ocv ` W ) ` x ) = { ( 0g ` W ) } ) ) |
52 |
35 51
|
syl5bi |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( -. ( N ` x ) C. ( Base ` W ) -> ( ( ocv ` W ) ` x ) = { ( 0g ` W ) } ) ) |
53 |
52
|
necon1ad |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } -> ( N ` x ) C. ( Base ` W ) ) ) |
54 |
34 53
|
syld |
|- ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( -. y e. x -> ( N ` x ) C. ( Base ` W ) ) ) |
55 |
54
|
expimpd |
|- ( ( B e. ( OBasis ` W ) /\ x C. B ) -> ( ( y e. B /\ -. y e. x ) -> ( N ` x ) C. ( Base ` W ) ) ) |
56 |
55
|
exlimdv |
|- ( ( B e. ( OBasis ` W ) /\ x C. B ) -> ( E. y ( y e. B /\ -. y e. x ) -> ( N ` x ) C. ( Base ` W ) ) ) |
57 |
19 56
|
mpd |
|- ( ( B e. ( OBasis ` W ) /\ x C. B ) -> ( N ` x ) C. ( Base ` W ) ) |
58 |
57
|
ex |
|- ( B e. ( OBasis ` W ) -> ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) |
59 |
58
|
alrimiv |
|- ( B e. ( OBasis ` W ) -> A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) |
60 |
5 1 2
|
islbs3 |
|- ( W e. LVec -> ( B e. J <-> ( B C_ ( Base ` W ) /\ ( N ` B ) = ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) ) ) |
61 |
|
3anan32 |
|- ( ( B C_ ( Base ` W ) /\ ( N ` B ) = ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) <-> ( ( B C_ ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) /\ ( N ` B ) = ( Base ` W ) ) ) |
62 |
60 61
|
bitrdi |
|- ( W e. LVec -> ( B e. J <-> ( ( B C_ ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) /\ ( N ` B ) = ( Base ` W ) ) ) ) |
63 |
62
|
baibd |
|- ( ( W e. LVec /\ ( B C_ ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) ) -> ( B e. J <-> ( N ` B ) = ( Base ` W ) ) ) |
64 |
17 6 59 63
|
syl12anc |
|- ( B e. ( OBasis ` W ) -> ( B e. J <-> ( N ` B ) = ( Base ` W ) ) ) |
65 |
13 15 64
|
3bitr4rd |
|- ( B e. ( OBasis ` W ) -> ( B e. J <-> ( N ` B ) e. C ) ) |