| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obslbs.j |  |-  J = ( LBasis ` W ) | 
						
							| 2 |  | obslbs.n |  |-  N = ( LSpan ` W ) | 
						
							| 3 |  | obslbs.c |  |-  C = ( ClSubSp ` W ) | 
						
							| 4 |  | obsrcl |  |-  ( B e. ( OBasis ` W ) -> W e. PreHil ) | 
						
							| 5 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 6 | 5 | obsss |  |-  ( B e. ( OBasis ` W ) -> B C_ ( Base ` W ) ) | 
						
							| 7 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 8 | 5 7 2 | ocvlsp |  |-  ( ( W e. PreHil /\ B C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( N ` B ) ) = ( ( ocv ` W ) ` B ) ) | 
						
							| 9 | 4 6 8 | syl2anc |  |-  ( B e. ( OBasis ` W ) -> ( ( ocv ` W ) ` ( N ` B ) ) = ( ( ocv ` W ) ` B ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( B e. ( OBasis ` W ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) = ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) ) | 
						
							| 11 | 7 5 | obs2ocv |  |-  ( B e. ( OBasis ` W ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) = ( Base ` W ) ) | 
						
							| 12 | 10 11 | eqtrd |  |-  ( B e. ( OBasis ` W ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) = ( Base ` W ) ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( B e. ( OBasis ` W ) -> ( ( N ` B ) = ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) <-> ( N ` B ) = ( Base ` W ) ) ) | 
						
							| 14 | 7 3 | iscss |  |-  ( W e. PreHil -> ( ( N ` B ) e. C <-> ( N ` B ) = ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) ) ) | 
						
							| 15 | 4 14 | syl |  |-  ( B e. ( OBasis ` W ) -> ( ( N ` B ) e. C <-> ( N ` B ) = ( ( ocv ` W ) ` ( ( ocv ` W ) ` ( N ` B ) ) ) ) ) | 
						
							| 16 |  | phllvec |  |-  ( W e. PreHil -> W e. LVec ) | 
						
							| 17 | 4 16 | syl |  |-  ( B e. ( OBasis ` W ) -> W e. LVec ) | 
						
							| 18 |  | pssnel |  |-  ( x C. B -> E. y ( y e. B /\ -. y e. x ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( B e. ( OBasis ` W ) /\ x C. B ) -> E. y ( y e. B /\ -. y e. x ) ) | 
						
							| 20 |  | simpll |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> B e. ( OBasis ` W ) ) | 
						
							| 21 |  | pssss |  |-  ( x C. B -> x C_ B ) | 
						
							| 22 | 21 | ad2antlr |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> x C_ B ) | 
						
							| 23 |  | simpr |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> y e. B ) | 
						
							| 24 | 7 | obselocv |  |-  ( ( B e. ( OBasis ` W ) /\ x C_ B /\ y e. B ) -> ( y e. ( ( ocv ` W ) ` x ) <-> -. y e. x ) ) | 
						
							| 25 | 20 22 23 24 | syl3anc |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( y e. ( ( ocv ` W ) ` x ) <-> -. y e. x ) ) | 
						
							| 26 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 27 | 26 | obsne0 |  |-  ( ( B e. ( OBasis ` W ) /\ y e. B ) -> y =/= ( 0g ` W ) ) | 
						
							| 28 | 20 23 27 | syl2anc |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> y =/= ( 0g ` W ) ) | 
						
							| 29 |  | nelsn |  |-  ( y =/= ( 0g ` W ) -> -. y e. { ( 0g ` W ) } ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> -. y e. { ( 0g ` W ) } ) | 
						
							| 31 |  | nelne1 |  |-  ( ( y e. ( ( ocv ` W ) ` x ) /\ -. y e. { ( 0g ` W ) } ) -> ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } ) | 
						
							| 32 | 31 | expcom |  |-  ( -. y e. { ( 0g ` W ) } -> ( y e. ( ( ocv ` W ) ` x ) -> ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } ) ) | 
						
							| 33 | 30 32 | syl |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( y e. ( ( ocv ` W ) ` x ) -> ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } ) ) | 
						
							| 34 | 25 33 | sylbird |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( -. y e. x -> ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } ) ) | 
						
							| 35 |  | npss |  |-  ( -. ( N ` x ) C. ( Base ` W ) <-> ( ( N ` x ) C_ ( Base ` W ) -> ( N ` x ) = ( Base ` W ) ) ) | 
						
							| 36 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 37 | 4 36 | syl |  |-  ( B e. ( OBasis ` W ) -> W e. LMod ) | 
						
							| 38 | 37 | ad2antrr |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> W e. LMod ) | 
						
							| 39 | 6 | ad2antrr |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> B C_ ( Base ` W ) ) | 
						
							| 40 | 22 39 | sstrd |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> x C_ ( Base ` W ) ) | 
						
							| 41 | 5 2 | lspssv |  |-  ( ( W e. LMod /\ x C_ ( Base ` W ) ) -> ( N ` x ) C_ ( Base ` W ) ) | 
						
							| 42 | 38 40 41 | syl2anc |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( N ` x ) C_ ( Base ` W ) ) | 
						
							| 43 |  | fveq2 |  |-  ( ( N ` x ) = ( Base ` W ) -> ( ( ocv ` W ) ` ( N ` x ) ) = ( ( ocv ` W ) ` ( Base ` W ) ) ) | 
						
							| 44 | 4 | ad2antrr |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> W e. PreHil ) | 
						
							| 45 | 5 7 2 | ocvlsp |  |-  ( ( W e. PreHil /\ x C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( N ` x ) ) = ( ( ocv ` W ) ` x ) ) | 
						
							| 46 | 44 40 45 | syl2anc |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ocv ` W ) ` ( N ` x ) ) = ( ( ocv ` W ) ` x ) ) | 
						
							| 47 | 5 7 26 | ocv1 |  |-  ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) = { ( 0g ` W ) } ) | 
						
							| 48 | 44 47 | syl |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ocv ` W ) ` ( Base ` W ) ) = { ( 0g ` W ) } ) | 
						
							| 49 | 46 48 | eqeq12d |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ( ocv ` W ) ` ( N ` x ) ) = ( ( ocv ` W ) ` ( Base ` W ) ) <-> ( ( ocv ` W ) ` x ) = { ( 0g ` W ) } ) ) | 
						
							| 50 | 43 49 | imbitrid |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( N ` x ) = ( Base ` W ) -> ( ( ocv ` W ) ` x ) = { ( 0g ` W ) } ) ) | 
						
							| 51 | 42 50 | embantd |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ( N ` x ) C_ ( Base ` W ) -> ( N ` x ) = ( Base ` W ) ) -> ( ( ocv ` W ) ` x ) = { ( 0g ` W ) } ) ) | 
						
							| 52 | 35 51 | biimtrid |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( -. ( N ` x ) C. ( Base ` W ) -> ( ( ocv ` W ) ` x ) = { ( 0g ` W ) } ) ) | 
						
							| 53 | 52 | necon1ad |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( ( ( ocv ` W ) ` x ) =/= { ( 0g ` W ) } -> ( N ` x ) C. ( Base ` W ) ) ) | 
						
							| 54 | 34 53 | syld |  |-  ( ( ( B e. ( OBasis ` W ) /\ x C. B ) /\ y e. B ) -> ( -. y e. x -> ( N ` x ) C. ( Base ` W ) ) ) | 
						
							| 55 | 54 | expimpd |  |-  ( ( B e. ( OBasis ` W ) /\ x C. B ) -> ( ( y e. B /\ -. y e. x ) -> ( N ` x ) C. ( Base ` W ) ) ) | 
						
							| 56 | 55 | exlimdv |  |-  ( ( B e. ( OBasis ` W ) /\ x C. B ) -> ( E. y ( y e. B /\ -. y e. x ) -> ( N ` x ) C. ( Base ` W ) ) ) | 
						
							| 57 | 19 56 | mpd |  |-  ( ( B e. ( OBasis ` W ) /\ x C. B ) -> ( N ` x ) C. ( Base ` W ) ) | 
						
							| 58 | 57 | ex |  |-  ( B e. ( OBasis ` W ) -> ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) | 
						
							| 59 | 58 | alrimiv |  |-  ( B e. ( OBasis ` W ) -> A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) | 
						
							| 60 | 5 1 2 | islbs3 |  |-  ( W e. LVec -> ( B e. J <-> ( B C_ ( Base ` W ) /\ ( N ` B ) = ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) ) ) | 
						
							| 61 |  | 3anan32 |  |-  ( ( B C_ ( Base ` W ) /\ ( N ` B ) = ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) <-> ( ( B C_ ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) /\ ( N ` B ) = ( Base ` W ) ) ) | 
						
							| 62 | 60 61 | bitrdi |  |-  ( W e. LVec -> ( B e. J <-> ( ( B C_ ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) /\ ( N ` B ) = ( Base ` W ) ) ) ) | 
						
							| 63 | 62 | baibd |  |-  ( ( W e. LVec /\ ( B C_ ( Base ` W ) /\ A. x ( x C. B -> ( N ` x ) C. ( Base ` W ) ) ) ) -> ( B e. J <-> ( N ` B ) = ( Base ` W ) ) ) | 
						
							| 64 | 17 6 59 63 | syl12anc |  |-  ( B e. ( OBasis ` W ) -> ( B e. J <-> ( N ` B ) = ( Base ` W ) ) ) | 
						
							| 65 | 13 15 64 | 3bitr4rd |  |-  ( B e. ( OBasis ` W ) -> ( B e. J <-> ( N ` B ) e. C ) ) |