Step |
Hyp |
Ref |
Expression |
1 |
|
obslbs.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
2 |
|
obslbs.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
obslbs.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
4 |
|
obsrcl |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝑊 ∈ PreHil ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
5
|
obsss |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝐵 ⊆ ( Base ‘ 𝑊 ) ) |
7 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
8 |
5 7 2
|
ocvlsp |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ⊆ ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) = ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) |
9 |
4 6 8
|
syl2anc |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) = ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) ) = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
11 |
7 5
|
obs2ocv |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) = ( Base ‘ 𝑊 ) ) |
12 |
10 11
|
eqtrd |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) ) = ( Base ‘ 𝑊 ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ( 𝑁 ‘ 𝐵 ) = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) ) ↔ ( 𝑁 ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ) ) |
14 |
7 3
|
iscss |
⊢ ( 𝑊 ∈ PreHil → ( ( 𝑁 ‘ 𝐵 ) ∈ 𝐶 ↔ ( 𝑁 ‘ 𝐵 ) = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) ) ) ) |
15 |
4 14
|
syl |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ( 𝑁 ‘ 𝐵 ) ∈ 𝐶 ↔ ( 𝑁 ‘ 𝐵 ) = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) ) ) ) |
16 |
|
phllvec |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) |
17 |
4 16
|
syl |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝑊 ∈ LVec ) |
18 |
|
pssnel |
⊢ ( 𝑥 ⊊ 𝐵 → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑥 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑥 ) ) |
20 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐵 ∈ ( OBasis ‘ 𝑊 ) ) |
21 |
|
pssss |
⊢ ( 𝑥 ⊊ 𝐵 → 𝑥 ⊆ 𝐵 ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ⊆ 𝐵 ) |
23 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
24 |
7
|
obselocv |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ↔ ¬ 𝑦 ∈ 𝑥 ) ) |
25 |
20 22 23 24
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ↔ ¬ 𝑦 ∈ 𝑥 ) ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
27 |
26
|
obsne0 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ≠ ( 0g ‘ 𝑊 ) ) |
28 |
20 23 27
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ≠ ( 0g ‘ 𝑊 ) ) |
29 |
|
nelsn |
⊢ ( 𝑦 ≠ ( 0g ‘ 𝑊 ) → ¬ 𝑦 ∈ { ( 0g ‘ 𝑊 ) } ) |
30 |
28 29
|
syl |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝑦 ∈ { ( 0g ‘ 𝑊 ) } ) |
31 |
|
nelne1 |
⊢ ( ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ∧ ¬ 𝑦 ∈ { ( 0g ‘ 𝑊 ) } ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ≠ { ( 0g ‘ 𝑊 ) } ) |
32 |
31
|
expcom |
⊢ ( ¬ 𝑦 ∈ { ( 0g ‘ 𝑊 ) } → ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ≠ { ( 0g ‘ 𝑊 ) } ) ) |
33 |
30 32
|
syl |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ≠ { ( 0g ‘ 𝑊 ) } ) ) |
34 |
25 33
|
sylbird |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ¬ 𝑦 ∈ 𝑥 → ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ≠ { ( 0g ‘ 𝑊 ) } ) ) |
35 |
|
npss |
⊢ ( ¬ ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ↔ ( ( 𝑁 ‘ 𝑥 ) ⊆ ( Base ‘ 𝑊 ) → ( 𝑁 ‘ 𝑥 ) = ( Base ‘ 𝑊 ) ) ) |
36 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
37 |
4 36
|
syl |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝑊 ∈ LMod ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑊 ∈ LMod ) |
39 |
6
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐵 ⊆ ( Base ‘ 𝑊 ) ) |
40 |
22 39
|
sstrd |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ⊆ ( Base ‘ 𝑊 ) ) |
41 |
5 2
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑥 ) ⊆ ( Base ‘ 𝑊 ) ) |
42 |
38 40 41
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑥 ) ⊆ ( Base ‘ 𝑊 ) ) |
43 |
|
fveq2 |
⊢ ( ( 𝑁 ‘ 𝑥 ) = ( Base ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝑥 ) ) = ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ) |
44 |
4
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑊 ∈ PreHil ) |
45 |
5 7 2
|
ocvlsp |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ⊆ ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝑥 ) ) = ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) |
46 |
44 40 45
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝑥 ) ) = ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) |
47 |
5 7 26
|
ocv1 |
⊢ ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) = { ( 0g ‘ 𝑊 ) } ) |
48 |
44 47
|
syl |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) = { ( 0g ‘ 𝑊 ) } ) |
49 |
46 48
|
eqeq12d |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝑥 ) ) = ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ↔ ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) = { ( 0g ‘ 𝑊 ) } ) ) |
50 |
43 49
|
syl5ib |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑥 ) = ( Base ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) = { ( 0g ‘ 𝑊 ) } ) ) |
51 |
42 50
|
embantd |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑁 ‘ 𝑥 ) ⊆ ( Base ‘ 𝑊 ) → ( 𝑁 ‘ 𝑥 ) = ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) = { ( 0g ‘ 𝑊 ) } ) ) |
52 |
35 51
|
syl5bi |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ¬ ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) = { ( 0g ‘ 𝑊 ) } ) ) |
53 |
52
|
necon1ad |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ≠ { ( 0g ‘ 𝑊 ) } → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) |
54 |
34 53
|
syld |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ¬ 𝑦 ∈ 𝑥 → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) |
55 |
54
|
expimpd |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) |
56 |
55
|
exlimdv |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) → ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) |
57 |
19 56
|
mpd |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) |
58 |
57
|
ex |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( 𝑥 ⊊ 𝐵 → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) |
59 |
58
|
alrimiv |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ∀ 𝑥 ( 𝑥 ⊊ 𝐵 → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) |
60 |
5 1 2
|
islbs3 |
⊢ ( 𝑊 ∈ LVec → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑁 ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ( 𝑥 ⊊ 𝐵 → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) ) ) |
61 |
|
3anan32 |
⊢ ( ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑁 ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ( 𝑥 ⊊ 𝐵 → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) ↔ ( ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ( 𝑥 ⊊ 𝐵 → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑁 ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ) ) |
62 |
60 61
|
bitrdi |
⊢ ( 𝑊 ∈ LVec → ( 𝐵 ∈ 𝐽 ↔ ( ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ( 𝑥 ⊊ 𝐵 → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑁 ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ) ) ) |
63 |
62
|
baibd |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ( 𝑥 ⊊ 𝐵 → ( 𝑁 ‘ 𝑥 ) ⊊ ( Base ‘ 𝑊 ) ) ) ) → ( 𝐵 ∈ 𝐽 ↔ ( 𝑁 ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ) ) |
64 |
17 6 59 63
|
syl12anc |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( 𝐵 ∈ 𝐽 ↔ ( 𝑁 ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ) ) |
65 |
13 15 64
|
3bitr4rd |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( 𝐵 ∈ 𝐽 ↔ ( 𝑁 ‘ 𝐵 ) ∈ 𝐶 ) ) |