| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obslbs.j | ⊢ 𝐽  =  ( LBasis ‘ 𝑊 ) | 
						
							| 2 |  | obslbs.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | obslbs.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 4 |  | obsrcl | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  𝑊  ∈  PreHil ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 6 | 5 | obsss | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  𝐵  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 7 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 8 | 5 7 2 | ocvlsp | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) )  =  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) | 
						
							| 9 | 4 6 8 | syl2anc | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) )  =  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) )  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) | 
						
							| 11 | 7 5 | obs2ocv | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 12 | 10 11 | eqtrd | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( ( 𝑁 ‘ 𝐵 )  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) )  ↔  ( 𝑁 ‘ 𝐵 )  =  ( Base ‘ 𝑊 ) ) ) | 
						
							| 14 | 7 3 | iscss | ⊢ ( 𝑊  ∈  PreHil  →  ( ( 𝑁 ‘ 𝐵 )  ∈  𝐶  ↔  ( 𝑁 ‘ 𝐵 )  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) ) ) ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( ( 𝑁 ‘ 𝐵 )  ∈  𝐶  ↔  ( 𝑁 ‘ 𝐵 )  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝐵 ) ) ) ) ) | 
						
							| 16 |  | phllvec | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LVec ) | 
						
							| 17 | 4 16 | syl | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  𝑊  ∈  LVec ) | 
						
							| 18 |  | pssnel | ⊢ ( 𝑥  ⊊  𝐵  →  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝑥 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  →  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝑥 ) ) | 
						
							| 20 |  | simpll | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝐵  ∈  ( OBasis ‘ 𝑊 ) ) | 
						
							| 21 |  | pssss | ⊢ ( 𝑥  ⊊  𝐵  →  𝑥  ⊆  𝐵 ) | 
						
							| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑥  ⊆  𝐵 ) | 
						
							| 23 |  | simpr | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 24 | 7 | obselocv | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊆  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ↔  ¬  𝑦  ∈  𝑥 ) ) | 
						
							| 25 | 20 22 23 24 | syl3anc | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ↔  ¬  𝑦  ∈  𝑥 ) ) | 
						
							| 26 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 27 | 26 | obsne0 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 28 | 20 23 27 | syl2anc | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 29 |  | nelsn | ⊢ ( 𝑦  ≠  ( 0g ‘ 𝑊 )  →  ¬  𝑦  ∈  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ¬  𝑦  ∈  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 31 |  | nelne1 | ⊢ ( ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ∧  ¬  𝑦  ∈  { ( 0g ‘ 𝑊 ) } )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ≠  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 32 | 31 | expcom | ⊢ ( ¬  𝑦  ∈  { ( 0g ‘ 𝑊 ) }  →  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ≠  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 33 | 30 32 | syl | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ≠  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 34 | 25 33 | sylbird | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ¬  𝑦  ∈  𝑥  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ≠  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 35 |  | npss | ⊢ ( ¬  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 )  ↔  ( ( 𝑁 ‘ 𝑥 )  ⊆  ( Base ‘ 𝑊 )  →  ( 𝑁 ‘ 𝑥 )  =  ( Base ‘ 𝑊 ) ) ) | 
						
							| 36 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 37 | 4 36 | syl | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  𝑊  ∈  LMod ) | 
						
							| 38 | 37 | ad2antrr | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑊  ∈  LMod ) | 
						
							| 39 | 6 | ad2antrr | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝐵  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 40 | 22 39 | sstrd | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑥  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 41 | 5 2 | lspssv | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑥  ⊆  ( Base ‘ 𝑊 ) )  →  ( 𝑁 ‘ 𝑥 )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 42 | 38 40 41 | syl2anc | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑥 )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( ( 𝑁 ‘ 𝑥 )  =  ( Base ‘ 𝑊 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝑥 ) )  =  ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ) | 
						
							| 44 | 4 | ad2antrr | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑊  ∈  PreHil ) | 
						
							| 45 | 5 7 2 | ocvlsp | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝑥 ) )  =  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) | 
						
							| 46 | 44 40 45 | syl2anc | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝑥 ) )  =  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 ) ) | 
						
							| 47 | 5 7 26 | ocv1 | ⊢ ( 𝑊  ∈  PreHil  →  ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 48 | 44 47 | syl | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 49 | 46 48 | eqeq12d | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ( ( ocv ‘ 𝑊 ) ‘ ( 𝑁 ‘ 𝑥 ) )  =  ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) )  ↔  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  =  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 50 | 43 49 | imbitrid | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑁 ‘ 𝑥 )  =  ( Base ‘ 𝑊 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  =  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 51 | 42 50 | embantd | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ( ( 𝑁 ‘ 𝑥 )  ⊆  ( Base ‘ 𝑊 )  →  ( 𝑁 ‘ 𝑥 )  =  ( Base ‘ 𝑊 ) )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  =  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 52 | 35 51 | biimtrid | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ¬  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  =  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 53 | 52 | necon1ad | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ( ( ocv ‘ 𝑊 ) ‘ 𝑥 )  ≠  { ( 0g ‘ 𝑊 ) }  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) ) | 
						
							| 54 | 34 53 | syld | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ¬  𝑦  ∈  𝑥  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) ) | 
						
							| 55 | 54 | expimpd | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  →  ( ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝑥 )  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) ) | 
						
							| 56 | 55 | exlimdv | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  →  ( ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  𝑥 )  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) ) | 
						
							| 57 | 19 56 | mpd | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ⊊  𝐵 )  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) | 
						
							| 58 | 57 | ex | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( 𝑥  ⊊  𝐵  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) ) | 
						
							| 59 | 58 | alrimiv | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ∀ 𝑥 ( 𝑥  ⊊  𝐵  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) ) | 
						
							| 60 | 5 1 2 | islbs3 | ⊢ ( 𝑊  ∈  LVec  →  ( 𝐵  ∈  𝐽  ↔  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ( 𝑁 ‘ 𝐵 )  =  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥 ( 𝑥  ⊊  𝐵  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) ) ) ) | 
						
							| 61 |  | 3anan32 | ⊢ ( ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ( 𝑁 ‘ 𝐵 )  =  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥 ( 𝑥  ⊊  𝐵  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) )  ↔  ( ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥 ( 𝑥  ⊊  𝐵  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) )  ∧  ( 𝑁 ‘ 𝐵 )  =  ( Base ‘ 𝑊 ) ) ) | 
						
							| 62 | 60 61 | bitrdi | ⊢ ( 𝑊  ∈  LVec  →  ( 𝐵  ∈  𝐽  ↔  ( ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥 ( 𝑥  ⊊  𝐵  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) )  ∧  ( 𝑁 ‘ 𝐵 )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 63 | 62 | baibd | ⊢ ( ( 𝑊  ∈  LVec  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥 ( 𝑥  ⊊  𝐵  →  ( 𝑁 ‘ 𝑥 )  ⊊  ( Base ‘ 𝑊 ) ) ) )  →  ( 𝐵  ∈  𝐽  ↔  ( 𝑁 ‘ 𝐵 )  =  ( Base ‘ 𝑊 ) ) ) | 
						
							| 64 | 17 6 59 63 | syl12anc | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( 𝐵  ∈  𝐽  ↔  ( 𝑁 ‘ 𝐵 )  =  ( Base ‘ 𝑊 ) ) ) | 
						
							| 65 | 13 15 64 | 3bitr4rd | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( 𝐵  ∈  𝐽  ↔  ( 𝑁 ‘ 𝐵 )  ∈  𝐶 ) ) |