| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obselocv.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 2 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 3 | 2 | obsne0 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  𝐴  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 4 | 3 | 3adant2 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐴  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 5 |  | elin | ⊢ ( 𝐴  ∈  ( 𝐶  ∩  (  ⊥  ‘ 𝐶 ) )  ↔  ( 𝐴  ∈  𝐶  ∧  𝐴  ∈  (  ⊥  ‘ 𝐶 ) ) ) | 
						
							| 6 |  | obsrcl | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  𝑊  ∈  PreHil ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝑊  ∈  PreHil ) | 
						
							| 8 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝑊  ∈  LMod ) | 
						
							| 10 |  | simp2 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐶  ⊆  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 12 | 11 | obsss | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  𝐵  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐵  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 14 | 10 13 | sstrd | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐶  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 15 |  | eqid | ⊢ ( LSpan ‘ 𝑊 )  =  ( LSpan ‘ 𝑊 ) | 
						
							| 16 | 11 15 | lspssid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐶  ⊆  ( Base ‘ 𝑊 ) )  →  𝐶  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) | 
						
							| 17 | 9 14 16 | syl2anc | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐶  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) | 
						
							| 18 | 17 | ssrind | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐶  ∩  (  ⊥  ‘ 𝐶 ) )  ⊆  ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 )  ∩  (  ⊥  ‘ 𝐶 ) ) ) | 
						
							| 19 | 11 1 15 | ocvlsp | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐶  ⊆  ( Base ‘ 𝑊 ) )  →  (  ⊥  ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) )  =  (  ⊥  ‘ 𝐶 ) ) | 
						
							| 20 | 7 14 19 | syl2anc | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  (  ⊥  ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) )  =  (  ⊥  ‘ 𝐶 ) ) | 
						
							| 21 | 20 | ineq2d | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 )  ∩  (  ⊥  ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) )  =  ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 )  ∩  (  ⊥  ‘ 𝐶 ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 23 | 11 22 15 | lspcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐶  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 24 | 9 14 23 | syl2anc | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 25 | 1 22 2 | ocvin | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 )  ∈  ( LSubSp ‘ 𝑊 ) )  →  ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 )  ∩  (  ⊥  ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 26 | 7 24 25 | syl2anc | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 )  ∩  (  ⊥  ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 27 | 21 26 | eqtr3d | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 )  ∩  (  ⊥  ‘ 𝐶 ) )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 28 | 18 27 | sseqtrd | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐶  ∩  (  ⊥  ‘ 𝐶 ) )  ⊆  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 29 | 28 | sseld | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  ( 𝐶  ∩  (  ⊥  ‘ 𝐶 ) )  →  𝐴  ∈  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 30 | 5 29 | biimtrrid | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐴  ∈  𝐶  ∧  𝐴  ∈  (  ⊥  ‘ 𝐶 ) )  →  𝐴  ∈  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 31 |  | elsni | ⊢ ( 𝐴  ∈  { ( 0g ‘ 𝑊 ) }  →  𝐴  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 32 | 30 31 | syl6 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐴  ∈  𝐶  ∧  𝐴  ∈  (  ⊥  ‘ 𝐶 ) )  →  𝐴  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 33 | 32 | necon3ad | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ≠  ( 0g ‘ 𝑊 )  →  ¬  ( 𝐴  ∈  𝐶  ∧  𝐴  ∈  (  ⊥  ‘ 𝐶 ) ) ) ) | 
						
							| 34 | 4 33 | mpd | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ¬  ( 𝐴  ∈  𝐶  ∧  𝐴  ∈  (  ⊥  ‘ 𝐶 ) ) ) | 
						
							| 35 |  | imnan | ⊢ ( ( 𝐴  ∈  𝐶  →  ¬  𝐴  ∈  (  ⊥  ‘ 𝐶 ) )  ↔  ¬  ( 𝐴  ∈  𝐶  ∧  𝐴  ∈  (  ⊥  ‘ 𝐶 ) ) ) | 
						
							| 36 | 34 35 | sylibr | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  𝐶  →  ¬  𝐴  ∈  (  ⊥  ‘ 𝐶 ) ) ) | 
						
							| 37 | 36 | con2d | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  (  ⊥  ‘ 𝐶 )  →  ¬  𝐴  ∈  𝐶 ) ) | 
						
							| 38 |  | simpr | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  𝐶 ) | 
						
							| 39 |  | eleq1 | ⊢ ( 𝐴  =  𝑥  →  ( 𝐴  ∈  𝐶  ↔  𝑥  ∈  𝐶 ) ) | 
						
							| 40 | 38 39 | syl5ibrcom | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  𝐶 )  →  ( 𝐴  =  𝑥  →  𝐴  ∈  𝐶 ) ) | 
						
							| 41 | 40 | con3d | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  𝐶 )  →  ( ¬  𝐴  ∈  𝐶  →  ¬  𝐴  =  𝑥 ) ) | 
						
							| 42 |  | simpl1 | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  𝐶 )  →  𝐵  ∈  ( OBasis ‘ 𝑊 ) ) | 
						
							| 43 |  | simpl3 | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  𝐶 )  →  𝐴  ∈  𝐵 ) | 
						
							| 44 | 10 | sselda | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  𝐵 ) | 
						
							| 45 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 46 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 47 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 48 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 49 | 11 45 46 47 48 | obsip | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  if ( 𝐴  =  𝑥 ,  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ,  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 50 | 42 43 44 49 | syl3anc | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  𝐶 )  →  ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  if ( 𝐴  =  𝑥 ,  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ,  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 51 |  | iffalse | ⊢ ( ¬  𝐴  =  𝑥  →  if ( 𝐴  =  𝑥 ,  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ,  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 52 | 51 | eqeq2d | ⊢ ( ¬  𝐴  =  𝑥  →  ( ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  if ( 𝐴  =  𝑥 ,  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ,  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 53 | 50 52 | syl5ibcom | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  𝐶 )  →  ( ¬  𝐴  =  𝑥  →  ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 54 | 41 53 | syld | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  𝐶 )  →  ( ¬  𝐴  ∈  𝐶  →  ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 55 | 54 | ralrimdva | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ¬  𝐴  ∈  𝐶  →  ∀ 𝑥  ∈  𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 56 |  | simp3 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  𝐵 ) | 
						
							| 57 | 13 56 | sseldd | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 58 | 11 45 46 48 1 | elocv | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝐶 )  ↔  ( 𝐶  ⊆  ( Base ‘ 𝑊 )  ∧  𝐴  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 59 |  | df-3an | ⊢ ( ( 𝐶  ⊆  ( Base ‘ 𝑊 )  ∧  𝐴  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( ( 𝐶  ⊆  ( Base ‘ 𝑊 )  ∧  𝐴  ∈  ( Base ‘ 𝑊 ) )  ∧  ∀ 𝑥  ∈  𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 60 | 58 59 | bitri | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝐶 )  ↔  ( ( 𝐶  ⊆  ( Base ‘ 𝑊 )  ∧  𝐴  ∈  ( Base ‘ 𝑊 ) )  ∧  ∀ 𝑥  ∈  𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 61 | 60 | baib | ⊢ ( ( 𝐶  ⊆  ( Base ‘ 𝑊 )  ∧  𝐴  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝐴  ∈  (  ⊥  ‘ 𝐶 )  ↔  ∀ 𝑥  ∈  𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 62 | 14 57 61 | syl2anc | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  (  ⊥  ‘ 𝐶 )  ↔  ∀ 𝑥  ∈  𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 63 | 55 62 | sylibrd | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( ¬  𝐴  ∈  𝐶  →  𝐴  ∈  (  ⊥  ‘ 𝐶 ) ) ) | 
						
							| 64 | 37 63 | impbid | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  (  ⊥  ‘ 𝐶 )  ↔  ¬  𝐴  ∈  𝐶 ) ) |