Step |
Hyp |
Ref |
Expression |
1 |
|
obselocv.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
3 |
2
|
obsne0 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ≠ ( 0g ‘ 𝑊 ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ≠ ( 0g ‘ 𝑊 ) ) |
5 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝐶 ∩ ( ⊥ ‘ 𝐶 ) ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ) ) |
6 |
|
obsrcl |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝑊 ∈ PreHil ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝑊 ∈ PreHil ) |
8 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝑊 ∈ LMod ) |
10 |
|
simp2 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
12 |
11
|
obsss |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝐵 ⊆ ( Base ‘ 𝑊 ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ⊆ ( Base ‘ 𝑊 ) ) |
14 |
10 13
|
sstrd |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ⊆ ( Base ‘ 𝑊 ) ) |
15 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
16 |
11 15
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ⊆ ( Base ‘ 𝑊 ) ) → 𝐶 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) |
17 |
9 14 16
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ⊆ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) |
18 |
17
|
ssrind |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 ∩ ( ⊥ ‘ 𝐶 ) ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐶 ) ) ) |
19 |
11 1 15
|
ocvlsp |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐶 ⊆ ( Base ‘ 𝑊 ) ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) = ( ⊥ ‘ 𝐶 ) ) |
20 |
7 14 19
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) = ( ⊥ ‘ 𝐶 ) ) |
21 |
20
|
ineq2d |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ∩ ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) ) = ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐶 ) ) ) |
22 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
23 |
11 22 15
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ⊆ ( Base ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
24 |
9 14 23
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
25 |
1 22 2
|
ocvin |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ∩ ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) ) = { ( 0g ‘ 𝑊 ) } ) |
26 |
7 24 25
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ∩ ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ) ) = { ( 0g ‘ 𝑊 ) } ) |
27 |
21 26
|
eqtr3d |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐶 ) ) = { ( 0g ‘ 𝑊 ) } ) |
28 |
18 27
|
sseqtrd |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 ∩ ( ⊥ ‘ 𝐶 ) ) ⊆ { ( 0g ‘ 𝑊 ) } ) |
29 |
28
|
sseld |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝐶 ∩ ( ⊥ ‘ 𝐶 ) ) → 𝐴 ∈ { ( 0g ‘ 𝑊 ) } ) ) |
30 |
5 29
|
syl5bir |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ) → 𝐴 ∈ { ( 0g ‘ 𝑊 ) } ) ) |
31 |
|
elsni |
⊢ ( 𝐴 ∈ { ( 0g ‘ 𝑊 ) } → 𝐴 = ( 0g ‘ 𝑊 ) ) |
32 |
30 31
|
syl6 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ) → 𝐴 = ( 0g ‘ 𝑊 ) ) ) |
33 |
32
|
necon3ad |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ≠ ( 0g ‘ 𝑊 ) → ¬ ( 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ) ) ) |
34 |
4 33
|
mpd |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ¬ ( 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ) ) |
35 |
|
imnan |
⊢ ( ( 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ) ↔ ¬ ( 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ) ) |
36 |
34 35
|
sylibr |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ) ) |
37 |
36
|
con2d |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐶 ) → ¬ 𝐴 ∈ 𝐶 ) ) |
38 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) |
39 |
|
eleq1 |
⊢ ( 𝐴 = 𝑥 → ( 𝐴 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶 ) ) |
40 |
38 39
|
syl5ibrcom |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐴 = 𝑥 → 𝐴 ∈ 𝐶 ) ) |
41 |
40
|
con3d |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ( ¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 = 𝑥 ) ) |
42 |
|
simpl1 |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ ( OBasis ‘ 𝑊 ) ) |
43 |
|
simpl3 |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
44 |
10
|
sselda |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐵 ) |
45 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
46 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
47 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
48 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
49 |
11 45 46 47 48
|
obsip |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = if ( 𝐴 = 𝑥 , ( 1r ‘ ( Scalar ‘ 𝑊 ) ) , ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
50 |
42 43 44 49
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = if ( 𝐴 = 𝑥 , ( 1r ‘ ( Scalar ‘ 𝑊 ) ) , ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
51 |
|
iffalse |
⊢ ( ¬ 𝐴 = 𝑥 → if ( 𝐴 = 𝑥 , ( 1r ‘ ( Scalar ‘ 𝑊 ) ) , ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
52 |
51
|
eqeq2d |
⊢ ( ¬ 𝐴 = 𝑥 → ( ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = if ( 𝐴 = 𝑥 , ( 1r ‘ ( Scalar ‘ 𝑊 ) ) , ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
53 |
50 52
|
syl5ibcom |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ( ¬ 𝐴 = 𝑥 → ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
54 |
41 53
|
syld |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ( ¬ 𝐴 ∈ 𝐶 → ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
55 |
54
|
ralrimdva |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ¬ 𝐴 ∈ 𝐶 → ∀ 𝑥 ∈ 𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
56 |
|
simp3 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
57 |
13 56
|
sseldd |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
58 |
11 45 46 48 1
|
elocv |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ↔ ( 𝐶 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐴 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
59 |
|
df-3an |
⊢ ( ( 𝐶 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐴 ∈ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝐶 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐴 ∈ ( Base ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
60 |
58 59
|
bitri |
⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ↔ ( ( 𝐶 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐴 ∈ ( Base ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
61 |
60
|
baib |
⊢ ( ( 𝐶 ⊆ ( Base ‘ 𝑊 ) ∧ 𝐴 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
62 |
14 57 61
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐶 ( 𝐴 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
63 |
55 62
|
sylibrd |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ¬ 𝐴 ∈ 𝐶 → 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ) ) |
64 |
37 63
|
impbid |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ ( ⊥ ‘ 𝐶 ) ↔ ¬ 𝐴 ∈ 𝐶 ) ) |