| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  →  𝐶  ⊆  𝐵 ) | 
						
							| 2 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 3 | 2 | obsne0 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 4 | 3 | 3ad2antl1 | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 5 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 6 | 5 | obselocv | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝐶 )  ↔  ¬  𝑥  ∈  𝐶 ) ) | 
						
							| 7 | 6 | 3expa | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝐶 )  ↔  ¬  𝑥  ∈  𝐶 ) ) | 
						
							| 8 | 7 | 3adantl2 | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝐶 )  ↔  ¬  𝑥  ∈  𝐶 ) ) | 
						
							| 9 |  | simpl2 | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  ( OBasis ‘ 𝑊 ) ) | 
						
							| 10 | 2 5 | obsocv | ⊢ ( 𝐶  ∈  ( OBasis ‘ 𝑊 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝐶 )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝐶 )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝐶 )  ↔  𝑥  ∈  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 13 |  | elsni | ⊢ ( 𝑥  ∈  { ( 0g ‘ 𝑊 ) }  →  𝑥  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 14 | 12 13 | biimtrdi | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( ( ocv ‘ 𝑊 ) ‘ 𝐶 )  →  𝑥  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 15 | 8 14 | sylbird | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( ¬  𝑥  ∈  𝐶  →  𝑥  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 16 | 15 | necon1ad | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ≠  ( 0g ‘ 𝑊 )  →  𝑥  ∈  𝐶 ) ) | 
						
							| 17 | 4 16 | mpd | ⊢ ( ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐶 ) | 
						
							| 18 | 1 17 | eqelssd | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐶  ⊆  𝐵 )  →  𝐶  =  𝐵 ) |