Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
2 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
3 |
2
|
obsne0 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ≠ ( 0g ‘ 𝑊 ) ) |
4 |
3
|
3ad2antl1 |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ≠ ( 0g ‘ 𝑊 ) ) |
5 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
6 |
5
|
obselocv |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝐶 ) ↔ ¬ 𝑥 ∈ 𝐶 ) ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝐶 ) ↔ ¬ 𝑥 ∈ 𝐶 ) ) |
8 |
7
|
3adantl2 |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝐶 ) ↔ ¬ 𝑥 ∈ 𝐶 ) ) |
9 |
|
simpl2 |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ( OBasis ‘ 𝑊 ) ) |
10 |
2 5
|
obsocv |
⊢ ( 𝐶 ∈ ( OBasis ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝐶 ) = { ( 0g ‘ 𝑊 ) } ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝐶 ) = { ( 0g ‘ 𝑊 ) } ) |
12 |
11
|
eleq2d |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝐶 ) ↔ 𝑥 ∈ { ( 0g ‘ 𝑊 ) } ) ) |
13 |
|
elsni |
⊢ ( 𝑥 ∈ { ( 0g ‘ 𝑊 ) } → 𝑥 = ( 0g ‘ 𝑊 ) ) |
14 |
12 13
|
syl6bi |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝐶 ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
15 |
8 14
|
sylbird |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐶 → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
16 |
15
|
necon1ad |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ≠ ( 0g ‘ 𝑊 ) → 𝑥 ∈ 𝐶 ) ) |
17 |
4 16
|
mpd |
⊢ ( ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) |
18 |
1 17
|
eqelssd |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝐶 = 𝐵 ) |