Metamath Proof Explorer


Theorem obs2ss

Description: A basis has no proper subsets that are also bases. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Assertion obs2ss B OBasis W C OBasis W C B C = B

Proof

Step Hyp Ref Expression
1 simp3 B OBasis W C OBasis W C B C B
2 eqid 0 W = 0 W
3 2 obsne0 B OBasis W x B x 0 W
4 3 3ad2antl1 B OBasis W C OBasis W C B x B x 0 W
5 eqid ocv W = ocv W
6 5 obselocv B OBasis W C B x B x ocv W C ¬ x C
7 6 3expa B OBasis W C B x B x ocv W C ¬ x C
8 7 3adantl2 B OBasis W C OBasis W C B x B x ocv W C ¬ x C
9 simpl2 B OBasis W C OBasis W C B x B C OBasis W
10 2 5 obsocv C OBasis W ocv W C = 0 W
11 9 10 syl B OBasis W C OBasis W C B x B ocv W C = 0 W
12 11 eleq2d B OBasis W C OBasis W C B x B x ocv W C x 0 W
13 elsni x 0 W x = 0 W
14 12 13 syl6bi B OBasis W C OBasis W C B x B x ocv W C x = 0 W
15 8 14 sylbird B OBasis W C OBasis W C B x B ¬ x C x = 0 W
16 15 necon1ad B OBasis W C OBasis W C B x B x 0 W x C
17 4 16 mpd B OBasis W C OBasis W C B x B x C
18 1 17 eqelssd B OBasis W C OBasis W C B C = B