Step |
Hyp |
Ref |
Expression |
1 |
|
obselocv.o |
|
2 |
|
eqid |
|
3 |
2
|
obsne0 |
|
4 |
3
|
3adant2 |
|
5 |
|
elin |
|
6 |
|
obsrcl |
|
7 |
6
|
3ad2ant1 |
|
8 |
|
phllmod |
|
9 |
7 8
|
syl |
|
10 |
|
simp2 |
|
11 |
|
eqid |
|
12 |
11
|
obsss |
|
13 |
12
|
3ad2ant1 |
|
14 |
10 13
|
sstrd |
|
15 |
|
eqid |
|
16 |
11 15
|
lspssid |
|
17 |
9 14 16
|
syl2anc |
|
18 |
17
|
ssrind |
|
19 |
11 1 15
|
ocvlsp |
|
20 |
7 14 19
|
syl2anc |
|
21 |
20
|
ineq2d |
|
22 |
|
eqid |
|
23 |
11 22 15
|
lspcl |
|
24 |
9 14 23
|
syl2anc |
|
25 |
1 22 2
|
ocvin |
|
26 |
7 24 25
|
syl2anc |
|
27 |
21 26
|
eqtr3d |
|
28 |
18 27
|
sseqtrd |
|
29 |
28
|
sseld |
|
30 |
5 29
|
syl5bir |
|
31 |
|
elsni |
|
32 |
30 31
|
syl6 |
|
33 |
32
|
necon3ad |
|
34 |
4 33
|
mpd |
|
35 |
|
imnan |
|
36 |
34 35
|
sylibr |
|
37 |
36
|
con2d |
|
38 |
|
simpr |
|
39 |
|
eleq1 |
|
40 |
38 39
|
syl5ibrcom |
|
41 |
40
|
con3d |
|
42 |
|
simpl1 |
|
43 |
|
simpl3 |
|
44 |
10
|
sselda |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
11 45 46 47 48
|
obsip |
|
50 |
42 43 44 49
|
syl3anc |
|
51 |
|
iffalse |
|
52 |
51
|
eqeq2d |
|
53 |
50 52
|
syl5ibcom |
|
54 |
41 53
|
syld |
|
55 |
54
|
ralrimdva |
|
56 |
|
simp3 |
|
57 |
13 56
|
sseldd |
|
58 |
11 45 46 48 1
|
elocv |
|
59 |
|
df-3an |
|
60 |
58 59
|
bitri |
|
61 |
60
|
baib |
|
62 |
14 57 61
|
syl2anc |
|
63 |
55 62
|
sylibrd |
|
64 |
37 63
|
impbid |
|