Metamath Proof Explorer


Theorem obselocv

Description: A basis element is in the orthocomplement of a subset of the basis iff it is not in the subset. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypothesis obselocv.o ˙ = ocv W
Assertion obselocv B OBasis W C B A B A ˙ C ¬ A C

Proof

Step Hyp Ref Expression
1 obselocv.o ˙ = ocv W
2 eqid 0 W = 0 W
3 2 obsne0 B OBasis W A B A 0 W
4 3 3adant2 B OBasis W C B A B A 0 W
5 elin A C ˙ C A C A ˙ C
6 obsrcl B OBasis W W PreHil
7 6 3ad2ant1 B OBasis W C B A B W PreHil
8 phllmod W PreHil W LMod
9 7 8 syl B OBasis W C B A B W LMod
10 simp2 B OBasis W C B A B C B
11 eqid Base W = Base W
12 11 obsss B OBasis W B Base W
13 12 3ad2ant1 B OBasis W C B A B B Base W
14 10 13 sstrd B OBasis W C B A B C Base W
15 eqid LSpan W = LSpan W
16 11 15 lspssid W LMod C Base W C LSpan W C
17 9 14 16 syl2anc B OBasis W C B A B C LSpan W C
18 17 ssrind B OBasis W C B A B C ˙ C LSpan W C ˙ C
19 11 1 15 ocvlsp W PreHil C Base W ˙ LSpan W C = ˙ C
20 7 14 19 syl2anc B OBasis W C B A B ˙ LSpan W C = ˙ C
21 20 ineq2d B OBasis W C B A B LSpan W C ˙ LSpan W C = LSpan W C ˙ C
22 eqid LSubSp W = LSubSp W
23 11 22 15 lspcl W LMod C Base W LSpan W C LSubSp W
24 9 14 23 syl2anc B OBasis W C B A B LSpan W C LSubSp W
25 1 22 2 ocvin W PreHil LSpan W C LSubSp W LSpan W C ˙ LSpan W C = 0 W
26 7 24 25 syl2anc B OBasis W C B A B LSpan W C ˙ LSpan W C = 0 W
27 21 26 eqtr3d B OBasis W C B A B LSpan W C ˙ C = 0 W
28 18 27 sseqtrd B OBasis W C B A B C ˙ C 0 W
29 28 sseld B OBasis W C B A B A C ˙ C A 0 W
30 5 29 syl5bir B OBasis W C B A B A C A ˙ C A 0 W
31 elsni A 0 W A = 0 W
32 30 31 syl6 B OBasis W C B A B A C A ˙ C A = 0 W
33 32 necon3ad B OBasis W C B A B A 0 W ¬ A C A ˙ C
34 4 33 mpd B OBasis W C B A B ¬ A C A ˙ C
35 imnan A C ¬ A ˙ C ¬ A C A ˙ C
36 34 35 sylibr B OBasis W C B A B A C ¬ A ˙ C
37 36 con2d B OBasis W C B A B A ˙ C ¬ A C
38 simpr B OBasis W C B A B x C x C
39 eleq1 A = x A C x C
40 38 39 syl5ibrcom B OBasis W C B A B x C A = x A C
41 40 con3d B OBasis W C B A B x C ¬ A C ¬ A = x
42 simpl1 B OBasis W C B A B x C B OBasis W
43 simpl3 B OBasis W C B A B x C A B
44 10 sselda B OBasis W C B A B x C x B
45 eqid 𝑖 W = 𝑖 W
46 eqid Scalar W = Scalar W
47 eqid 1 Scalar W = 1 Scalar W
48 eqid 0 Scalar W = 0 Scalar W
49 11 45 46 47 48 obsip B OBasis W A B x B A 𝑖 W x = if A = x 1 Scalar W 0 Scalar W
50 42 43 44 49 syl3anc B OBasis W C B A B x C A 𝑖 W x = if A = x 1 Scalar W 0 Scalar W
51 iffalse ¬ A = x if A = x 1 Scalar W 0 Scalar W = 0 Scalar W
52 51 eqeq2d ¬ A = x A 𝑖 W x = if A = x 1 Scalar W 0 Scalar W A 𝑖 W x = 0 Scalar W
53 50 52 syl5ibcom B OBasis W C B A B x C ¬ A = x A 𝑖 W x = 0 Scalar W
54 41 53 syld B OBasis W C B A B x C ¬ A C A 𝑖 W x = 0 Scalar W
55 54 ralrimdva B OBasis W C B A B ¬ A C x C A 𝑖 W x = 0 Scalar W
56 simp3 B OBasis W C B A B A B
57 13 56 sseldd B OBasis W C B A B A Base W
58 11 45 46 48 1 elocv A ˙ C C Base W A Base W x C A 𝑖 W x = 0 Scalar W
59 df-3an C Base W A Base W x C A 𝑖 W x = 0 Scalar W C Base W A Base W x C A 𝑖 W x = 0 Scalar W
60 58 59 bitri A ˙ C C Base W A Base W x C A 𝑖 W x = 0 Scalar W
61 60 baib C Base W A Base W A ˙ C x C A 𝑖 W x = 0 Scalar W
62 14 57 61 syl2anc B OBasis W C B A B A ˙ C x C A 𝑖 W x = 0 Scalar W
63 55 62 sylibrd B OBasis W C B A B ¬ A C A ˙ C
64 37 63 impbid B OBasis W C B A B A ˙ C ¬ A C