Metamath Proof Explorer


Theorem obs2ocv

Description: The double orthocomplement (closure) of an orthonormal basis is the whole space. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses obs2ocv.o ˙ = ocv W
obs2ocv.v V = Base W
Assertion obs2ocv B OBasis W ˙ ˙ B = V

Proof

Step Hyp Ref Expression
1 obs2ocv.o ˙ = ocv W
2 obs2ocv.v V = Base W
3 eqid 0 W = 0 W
4 3 1 obsocv B OBasis W ˙ B = 0 W
5 4 fveq2d B OBasis W ˙ ˙ B = ˙ 0 W
6 obsrcl B OBasis W W PreHil
7 2 1 3 ocvz W PreHil ˙ 0 W = V
8 6 7 syl B OBasis W ˙ 0 W = V
9 5 8 eqtrd B OBasis W ˙ ˙ B = V