Metamath Proof Explorer


Theorem ocvcss

Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssss.v V=BaseW
cssss.c C=ClSubSpW
ocvcss.o ˙=ocvW
Assertion ocvcss WPreHilSV˙SC

Proof

Step Hyp Ref Expression
1 cssss.v V=BaseW
2 cssss.c C=ClSubSpW
3 ocvcss.o ˙=ocvW
4 1 3 ocvocv WPreHilSVS˙˙S
5 3 ocv2ss S˙˙S˙˙˙S˙S
6 4 5 syl WPreHilSV˙˙˙S˙S
7 1 3 ocvss ˙SV
8 7 a1i SV˙SV
9 1 2 3 iscss2 WPreHil˙SV˙SC˙˙˙S˙S
10 8 9 sylan2 WPreHilSV˙SC˙˙˙S˙S
11 6 10 mpbird WPreHilSV˙SC