Metamath Proof Explorer


Theorem oddp1evenALTV

Description: An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion oddp1evenALTV N N Odd N + 1 Even

Proof

Step Hyp Ref Expression
1 isodd N Odd N N + 1 2
2 1 baib N N Odd N + 1 2
3 peano2z N N + 1
4 3 biantrurd N N + 1 2 N + 1 N + 1 2
5 2 4 bitrd N N Odd N + 1 N + 1 2
6 iseven N + 1 Even N + 1 N + 1 2
7 5 6 bitr4di N N Odd N + 1 Even